Obsah

1 Pojmy klasické mechaniky — pohyb a jeho popis 5
1.1 Tělesa a jejich modely 5
1.1.1 Hmotný bod 6
1.1.2 Těleso s diskrétním rozložením hmotnosti 7
1.1.3 Těleso se spojitým rozložením hmotnosti 11
1.2 Volné částice a vztahné soustavy 14
1.2.1 Časoprostor 14
1.2.2 Inerciální vztahné soustavy 17
1.3 Mechanický stav částice a jeho časový vývoj 19
1.3.1 Poloha a její změny 20
1.3.2 Rychlost a zrychlení 20
1.3.3 Geometrické charakteristiky trajektorie 23
1.3.4 Tečné a normálové zrychlení 31
1.3.5 Úhlové charakteristiky pohybu částice ... 32
1.3.6 Obrácená úloha: Od zrychlení k trajektorii I 34
1.4 Popis pohybu různými pozorovatelem — každý to vidí jinak 39
1.4.1 Okamžité šření interace a absolutnost současnosti 40
1.4.2 Přechod mezi soustavami souřadnic jako geometrický problém 40
1.4.3 Pohyb v různých vztahných soustavách — vektorová formulace 43
1.4.4 Pohyb v různých vztahných soustavách — matice formulace 49
1.4.5 Aplikace: Translační pohyb vztahných soustav, Galileiova transformace 52
1.4.6 Aplikace: Pohyb částice v laboratorní vztahně soustavě 54

2 Principy klasické mechaniky 59
2.1 První Newtonův zákon a jak mu rozumět 59
2.1.1 Newtonova formule prvního zákona a související otázky 60
2.1.2 Odpočid na otázky k prvnímu Newtonovu zákonu 61
2.2 Druhý Newtonův zákon a jeho dvojí čtení 62
2.2.1 Newtonova formule druhého zákona a související otázky 63
2.2.2 Odpočid na otázky k druhému Newtonovu zákonu 64
2.3 Třetí Newtonův zákon a jeho význam .. 68
 2.3.1 Newtonova formulace třetího zákona a podstaty interakce 68
 2.3.2 Silové zákony a základní interakce 69
2.4 Newtonovy zákony a polohyové rovnice 75
 2.4.1 Od interakce ke zrychlení 76
 2.4.2 Polohyové rovnice: Od zrychlení k trajektorii II 88
 2.4.3 Newtonovy zákony v neinerciálních soustavách 113
2.5 Práce a mechanická energie ... 117
 2.5.1 Práce sly po křivce ... 118
 2.5.2 Konzervativní sly a potenciální energie 120
 2.5.3 Kinetická energie .. 134

3 Mechanika soustav částic .. 137
 3.1 Impulsově věty a zákony zachování 137
 3.1.1 První impulsová věta 139
 3.1.2 Druhá impulsová věta 141
 3.1.3 Střed hmotnosti a jeho význam 146
 3.1.4 Dvojčásticová izolovaná soustava 152
 3.2 Rovnováha a polohy tělíct ... 165
 3.2.1 Rovnováha tělíct .. 166
 3.2.2 Tenzor \(J \) jako „převodník“ mezi úhlovou rychlostí a mo-
 mentem hybnosti ... 172
 3.2.3 Rotace tělého tělesa kolem pevné osy 174
 3.2.4 Rotace tělého tělesa kolem pevného bodu 196

4 Mechanika tekutin ... 201
 4.1 Statická rovnováha tekutin .. 201
 4.1.1 Podmínky rovnováhy 201
 4.1.2 Tlak a jeho rozložení v tekutině 201
 4.2 Pohyb tekutin ... 201
 4.2.1 Popis pohybu kontinua 201
 4.2.2 Pohyb ideálních tekutin 204
 4.2.3 Pohyb reálných tekutin 204

5 Soustavy mnoha částic a zákonností jejich chování 205
 5.1 Zákony termodynamiky ... 205
 5.2 Makroskopické veličiny a střední hodnoty 205
 5.3 xxxxx ... 205
Jak číst tento text

Text je koncipován takzvaně „pro dvojí čtení“. Základem jsou části psané normální velikostí písma a slouží pro první čtení. Části psané modrým petřitem jsou určeny k hlubššímu přemýšlení a k rozšíření znalosti problematiky. Jsou také často věnovány podrobnějším matematickým výpočtům. Při prvním čtení je lze vynechat bez ztráty souvislosti.

Důležité upozornění

Tento text je pracovní a dosud neprošel systematickou kontrolou korektora. Uvítáme upozornění čtenářů na případné překlepy či chyby.
Kapitola 1

Pojmy klasické mechaniky — pohyb a jeho popis

Cílem klasické mechaniky jsou předpovědi týkající se mechanického pohybu objektů a jejich soustav. Abychom uměli na základě mechanických zákonů pohyb „předpovídat“, musíme především umět jej popsat. Vstupním problémem klasické mechaniky je proto nalezení přiměřeného kvantitativního popisu pohybu. To je úkolem kinematiky, jedné z dílčích disciplín mechaniky.

1.1 Tělesa a jejich modely

Popis pohybu reálných objektů může být značně složitý — představte si například vířící masy vzdruhu při větrné smršti. Základem pro popis takto složitého pohybu musí být popis pohybu mnohem jednodušších modelů vystíhujících vlastnosti reálných objektů. O takových modelech pojednává tento odstavec.

Jednou z charakteristik neodmyslitelně spjatých jak s předměty, které nás obklopují, tak s tělesy světa planet, hvězd a galaxií i s částicemi mikrověta, je jejich hmotnost. Rozsah hmotností prozaických známých objektů je obrovský, od řádových hodnot 10^{-30} kg odpovídajících mikročásticím až po hmotnosti galaktických kusů, pohybující se v rozmezí od 10^{30}kg do 10^{45}kg. Jemnější škálu vystihuje následující tabulka.
Tabulka 1.1: Hmotnosti objektů

<table>
<thead>
<tr>
<th>Makrosvět</th>
<th>Log M</th>
<th>Makrosvět</th>
</tr>
</thead>
<tbody>
<tr>
<td>elektron</td>
<td>−30</td>
<td></td>
</tr>
<tr>
<td>μ-meson (mion)</td>
<td>−28</td>
<td></td>
</tr>
<tr>
<td>proton a neutron</td>
<td>−27</td>
<td></td>
</tr>
<tr>
<td>nejhmotnější atomy</td>
<td>−25</td>
<td></td>
</tr>
<tr>
<td>velké organické molekuly</td>
<td>−20</td>
<td></td>
</tr>
<tr>
<td>víruss</td>
<td>−18</td>
<td></td>
</tr>
<tr>
<td>jednobuněčný organismus</td>
<td>−8</td>
<td>−5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mravenec</td>
</tr>
<tr>
<td>2</td>
<td>člověk</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>slon</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>zaocéánská plavidla</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Země</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Slunce</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>naše Galaxie</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>galaktické kupy</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>dostud známá hmotnost vesmíru</td>
<td></td>
</tr>
</tbody>
</table>

Vnitřní struktura makroskopických hmotných objektů, tzv. těles, tvořených množstvím částic, které interagují prostřednictvím různých typů vazeb, je velmi složitá. Pro popis makroskopického mechanického pohybu tělesa jako celku, tj. jeho posuvu a změn orientace vůči okolním objektům, ani pro popis vzájemného pohybu jeho jednotlivých makroskopických částí, tj. deformace, však není podstatná. Je tedy možné, samozřejmě s ohledem na to, jaký typ makroskopického pohybu je v dané konkrétní situaci dominantní, charakterizovat objekty a jejich soustavy zjednodušeně, pomocí vhodných modelů přiměřeně vystihujících prostorné rozložení jejich hmotností.

Nejsnážší popis umožňuje dva extrémní modely: model tělesa s diskrétním rozložením hmotností a model tělesa se spojitým rozložením hmotností. Každý z nich umožňuje poměrně jednoduše definovat a prakticky vypočítat další charakteristiky, spjaté se studovanými objekty, které jsou důležité z hlediska jejich mechanického pohybu.

1.1.1 Hmotný bod

Největším problémem tělesa, nesoucího jeho základní charakteristiku — hmotnost, pomíjíme však její prostorové rozložení, je hmotný bod, ve zkrácené terminologii nazývaný také čistic. Hmotným bodem rozumíme geometrický bod
1.1. TĚLESA A JEJICH MODELY

v prostoru opatřený údajem o hmotnosti. Tímto modelem lze nahradit reálné těleso, jehož rozměry nehnou v dané konkrétní situaci roli. (Takovou situaci může představovat studium čistě posuvného polohy třeba i velmi rozměrného objektu — například studium polohy Země kolem Slunce, nezajímáme-li se o zemskou rotačí.) Hmotný bod, reprezentující těleso jako celek, pak umisťujeme do vhodné zvoleného místa objektu, jímž je například u stejnorodého kulového tělesa jeho geometrický střed. Prostor, v němž se reálná tělesa pohybují, modelujeme v klasické mechanice trojrozměrným euklidovským prostorem \(\mathbb{R}^3 \). Polehnu hmotného bodu pak charakterizujeme jeho polohovým vektorom \(\vec{r} \) vůči libovolné, avšak pevné, zvolenému vztahovému bodu \(O \), resp. složením tohoto vektoru \(\vec{r} = (x_1, x_2, x_3) \) vůči kartézské soustavě souřadnic \(< O; \vec{e}_1, \vec{e}_2, \vec{e}_3 > \), zadané počátkem \(O \) a jednotkovými navzájem kolmými vektory ortonormální báze \(< \vec{e}_1, \vec{e}_2, \vec{e}_3 > \), resp. \(< O; x_1, x_2, x_3 > \) (zadání počátkem a navzájem kolmými osami \(x_1, x_2, x_3 \) a opatřených stejnou dělkou jednotkou).

1.1.2 Těleso s diskrétním rozložením hmotnosti

O soustavě tvořené \(N \) reálnými objekty, z nichž každý může být nahrazen hmotným bodem, hovoříme jako o tělesu s diskrétním rozložením hmotnosti, resp. soustavě hmotných bodů či soustavě částic. (Příkladem může být sluneční soustava, při jejímž popisu lze za jistých okolností nahradit Slunce i každou z planet hmotným bodem.) Z hlediska popisu soustavy jako celku jsou rozhodující nejen hmotnosti jednotlivých částic, ale i jejich polohy.

Obr. 1.1: Popis tělesa s diskrétním rozložením hmotnosti

Úplná informace o prostorovém rozložení hmotnosti tělesa v daném okamžiku je obsažena v souboru dvojic

\[\{ m_i, \vec{r}_i \}, i \in \{1, \ldots, N \}, \]
KDE INDEX i ČÍSLUJE JEDNOTLIVÉ ČÁSTICE SOUSTAVY. CELKOVÁ HROMOSNOST TĚLESA JE DÁNA SOUČTEM

$$m = \sum_{i=1}^{N} m_i = m_1 + m_2 + \ldots + m_N . \quad (1.1)$$

S ROZKLEIŠENÍ HROMOSNOSTI BEZPROSTŘEDNĚ SOUVIŠÍ DALŠÍ DŮLEŽITÉ CHARAKTERISTIKY TĚLESA, JEJIŽI FYZIKÁLNÍ VÝZNÁM POCHOPNÉ V DALŠÍCH KAPITOLÁCH: STŘED HROMOSNOSTI TĚLESA JE BOD O POLOHOVÉM VETKORU \vec{r}_0 DEFINOVANÝM VZTALEM

$$\vec{r}_0 = \frac{1}{m} \sum_{i=1}^{N} m_i \vec{r}_i = \frac{m_1 \vec{r}_1 + \ldots + m_N \vec{r}_N}{m_1 + \ldots + m_N} . \quad (1.2)$$

JEDNÁ SE O VAŽENÝ PRŮMĚR POLOHOVÝCH VETKORŮ ČÁSTIC S VAHAMI URČENÝMI JEDNOTLIVÝMI HROMOSNOSTMI. PRO SLOŽKY POLOHOVÉHO VETKORU ŠTĚRU HROMOSNOSTI PLÁTÍ

$$x_{0,1} = \frac{1}{m} \sum_{i=1}^{N} m_i x_{i,1} , \quad x_{0,2} = \frac{1}{m} \sum_{i=1}^{N} m_i x_{i,2} , \quad x_{0,3} = \frac{1}{m} \sum_{i=1}^{N} m_i x_{i,3} . \quad (1.3)$$

TENSOR MONENTU SETRAVNOSTI TĚLESA J JE DÁN ŠESTI VELIČINAMI, UPOŠRÁNÁNÝMI DO SYMETRIČKÉ MATICE J A NAŽÁDNÝMI SLOŽKY TENSORU MONENTU SETRAVNOSTI:

$$J = \begin{pmatrix} J_{11} & J_{12} & J_{13} \\ J_{12} & J_{22} & J_{23} \\ J_{13} & J_{23} & J_{33} \end{pmatrix} = \quad (1.4)$$

$$= \begin{pmatrix} \sum_{i=1}^{N} m_i (x_{2,1}^2 + x_{3,1}^2) & \sum_{i=1}^{N} -m_i x_{1,1} x_{1,2} & \sum_{i=1}^{N} -m_i x_{1,1} x_{1,3} \\ \sum_{i=1}^{N} -m_i x_{1,1} x_{2,1} & \sum_{i=1}^{N} m_i (x_{1,2}^2 + x_{3,2}^2) & \sum_{i=1}^{N} -m_i x_{1,2} x_{1,3} \\ \sum_{i=1}^{N} -m_i x_{1,1} x_{3,1} & \sum_{i=1}^{N} -m_i x_{1,2} x_{1,3} & \sum_{i=1}^{N} m_i (x_{1,3}^2 + x_{2,3}^2) \end{pmatrix} .$$

JPRZuw J_{11} , J_{22} , J_{33} PŘEDSTAVUJÍ TZN. DIAGOSELNÍ SLOŽKY, ŽEẢTALNÍ, NEDIAGOSELNÍ, SLOŽKY SE NAŽÁDNÝMI DEVIACE MONENTY. SPECIFICKÝM PŘÍPADEM SOUTÁZOVÉ ČÁSTICE JE TZN. TULÉ TĚLESO, V NĚMŽ JE VAŽENOSTI KALE ŽIVOČÍ ČÁSTICE NEMĚNÁ, T.J.

$$| \vec{r}_k | = | \vec{r}_j - \vec{r}_k | = \text{konst}, \quad k, j \in \{1, \ldots, N\} .$$

TULÉ TĚLESO TEDY NEzap deformeovat. Znamená to, že existují souřadnicové soustavy, pevně spjaté s tělesem, ve kterých jsou poloohový vektor středu hromosnosti a tensor momentu setravnosti konstantní. Jedná se o tzv. souřadnicové soustavy pevné v tělese. Často je užitečné vybrat z nich ty, jejichž počátek je umístěn ve středu hromosnosti tělesa. Je zřejmé, že složky poloohového vektoru středu hromosnosti i složky tensoru momentu setravnosti závisí na vělc hromosnosti souřadnic. Ke konkrétnímu řešení tohoto problému se vrátíme v dalších kapitolách.

Poloohové vektory $\vec{r}_1(t), \ldots, \vec{r}_N(t)$ ČÁSTIC TVOŘÍCH SOUSTAVU URCUJÍ JIŽ OKAMŽITOU KONFIGURACI. Konfigurace soustavy je tedy zadána souborem $3N$ kartézských souřadnic $\{x_{ij}(t)\}_{i \in \{1, \ldots, N\}}$ těchto poloohových vektorů. Větší užitečnou, i když poněkud abstraktivní, je představa těchto N skalárních veličin jako souřadnic bodu v $3N$-rozměrném euklidovském prostoru \mathbb{R}^{3N}, nazývaném konfiguračním

8KAPITOLA 1. POJMY KLASICKÉ MECHANIKY —POHYB A JEHO POPIS
prostorem. Nejsou-li na konfiguraci soustavy částic kladeny žádné omezení požadavky, představuje každý bod prostoru \(\mathbb{R}^{3N} \) právě jednu z možných konfigurací soustavy. Omezení množiny konfigurací, takzvané vazební podmínky, mohou mít tvar nerovností typu \(a_{ij} \leq x_{ij} \leq b_{ij}, \ i \in \{1, \ldots, N\}, \ j \in \{1, 2, 3\}, \) obecněji \(A \leq f(x_{11}, \ldots, x_{N3}) \leq B, \) vymezených v prostoru \(\mathbb{R}^{3N} \) 3N-rozměrnou oblast přípustných konfigurací, nebo tvar vztahů mezi souřadnicemi \(x_{ij} \), redukujících množinu přípustných konfigurací na konfigurační podprostor dimenze menší než 3N.

Příklad 1.1. Konfigurační prostor částice.

Situace představující možná omezení konfigurace soustavy ilustrujeme na příkladu jedné částice. Konfiguračním prostorem soustavy tvořené jedinou částicí, na jejíž polohu \(\vec{r} = (x_1, x_2, x_3) \) nejsou kladeny žádné požadavky, je prostor \(\mathbb{R}^3 \). Poloha částice je tedy bez omezení určena třemi souřadnicemi. Říkáme, že částice má tři stupně volnosti, \(s = 3 \). Požadavek určení částice v násobě tvaru kvádru o hranách \(a, b, c \), resp. koulí o poloměru \(R \), vede k omezení přípustných konfigurací na oblast prostoru \(\mathbb{R}^3 \) určenou např. nerovnostmi \(0 \leq x_1 \leq a, \ 0 \leq x_2 \leq b, \ 0 \leq x_3 \leq c, \) resp. \(0 \leq x_1^2 + x_2^2 + x_3^2 \leq R \).

\begin{center}
\begin{tabular}{c}
\includegraphics[width=0.8\textwidth]{chart.png}
\end{tabular}
\end{center}

Obr. 1.2: **Konfigurační prostor jedné částice**

Je-li částice zavěšena na vlákne neproměnné délky \(l \) a uvedena do pohybu tak, že křivá v rovině \(x_2Ox_3 \) s maximální úhlovou výchylkou \(\varphi_0 \), je množina jejich konfigurací určena vztahy \(x_1 = 0, \ x_2^2 + x_3^2 = l^2 \) a nerovností \(-\varphi_0 \leq \varphi \leq \varphi_0 \). Její pohyb je omezen na kruhový oblouk, tj. jednorozezný útvar. Poloku částice lze v každém okamžiku popsat jediným údajem — úhlovou výchylkou \(\varphi(t) \) (částice má jeden stupeň volnosti, \(s = 1 \)). Výchylku lze chápat jako **zobecněnou**
souřadnicí (není to souřadnice kartézská), udávající polohu soustavy v jedno-
rozměrném konfiguračním prostoru \(\mathbb{R} \) (prostor úhlu). Soustava tedy má jediný
stupeň volnosti, na který se vlivem dvou vazebních podmínek redukoval popis
jejich konfigurací z původních tří stupňů volnosti určených kartézskými souřad-
icemi \(x_1, x_2, x_3 \).

Soustava \(N \) částic, na jejíž konfiguraci nejsou kladeny žádné vazební podmínky,
má \(3N \) stupňů volnosti. Podlehá-li však \(k \) nezávislým vazebním podmínkám,
redukuje se její počet stupňů volnosti na hodnotu
\[
s = 3N - k.
\]

Každá z konfigurací takové soustavy je reprezentována bodem v \(s \)-rozměrném
konfiguračním prostoru \(\mathbb{R}^s \) prostřednictvím tzv. zobecněných souřadnic
\[
(q_1(t), \ldots, q_s(t)),
\]
ktoré obecně nemusí mít význam kartézkých souřadnic částic soustavy.

Příklad 1.2. Konfigurační prostor tuhé činěk.

Soustava dvou částic o hmotnostech \(m \) a \(M \) s vazební podmínkou \(| \vec{r}_1(t) - \vec{r}_2(t) | = l = \text{konst.} \) (tuhá činěka) má \(s = 5 \) stupnů volnosti. Zobecněnými
souřadnicemi mohou být např. kartézké souřadnice jejího středu hmotnosti
\((x_{01}, x_{02}, x_{03})\) a dva úhlové souřadnice \(\varphi_1(t) \) a \(\varphi_2(t) \), představující natočení
činěky kolem dvou navzájem kolmých os \(o_1, o_2 \) kolmých i ke spojnici částic.

Obr. 1.3: Konfigurace tuhé činěk

Konfigurační prostor soustavy je pětirozměrný (\(\mathbb{R}^5 \)) a každá konfigurace je
zadána souborem zobecněných souřadnic
\[
(q_1(t), q_2(t), q_3(t), q_4(t), q_5(t)) = (x_{01}(t), x_{02}(t), x_{03}(t), \varphi_1(t), \varphi_2(t)).
\]
1.1. TĚLESA A JEJICH MODELY

1.1.3 Těleso se spojitým rozložením hmotnosti

Modelem představujícím druhý extrém při popisu rozložení hmotnosti objektu, opět s odloučeným od jeho mikrostruktury, je model **tělesa se spojitým rozložením hmotnosti** — *kontinua*. Tento model nebere v úvahu složení objektu z jednotlivých hmotných bodů. Odporučí nacpák představě tělesa myšlenkově rozděleného na elementární útvary infinitesimálně malých rozměrů, tzv. **hmotné elementy**.

Obr. 1.4: Popis tělesa s spojitým rozložením hmotnosti

Úplnou informaci o rozložení hmotnosti v daném okamžiku představuje * hustota tělesa*, skalární funkce vektorové proměnné \(\vec{r} \), definovaná vztahem

\[
\rho(\vec{r}) = \lim_{\Delta V \to 0} \frac{\Delta m(\vec{r})}{\Delta V}.
\]

\(\Delta V = \Delta x_1 \Delta x_2 \Delta x_3 \) je objem elementárního kvádru umístěného v bodě \(\vec{r} \) (vektor \(\vec{r} \) určuje např. polohu levého dolního zadního vrcholu kvádru). \(\Delta m(\vec{r}) \) je jeho hmotnost a podíl \(\frac{\Delta m(\vec{r})}{\Delta V} \) je průměrná * hustota* kvádru.

V realizických případech je funkce \(\rho(\vec{r}) \) spojitá nebo po částech spojitá na definici oboru \(V \) představováním tělem. (Spojitost funkce po částech znamená, že její definici obor lze rozdělit na konečný počet částí, přičemž na každé z nich je funkce spojitá.)

V analogii se vztahy (1.1) a (1.2) definujeme celkovou hmotnost a střed hmotnosti.

\[
m = \int_V \rho(\vec{r}) \, dV,
\]

(1.6)
12KAPITOLA 1. POJMY KLÁSICKÉ MECHANIKY — POHYB A JEHO POPIS

\[\vec{r}_0 = \frac{1}{m} \int_\mathbb{V} \vec{r} \rho(\vec{r}) \, d\mathbb{V}, \quad (1.7) \]

\[x_{0,j} = \frac{1}{m} \int_\mathbb{V} x_j \rho(x_1, x_2, x_3) \, dx_1 \, dx_2 \, dx_3, \quad j \in \{1, 2, 3\}. \]

Složky tenzoru momentu setřívačnosti tělesa se spojitým rozložením hmotností mají rovnoměrně integrální vyjádření:

\[
\begin{pmatrix}
\int_\mathbb{V} \rho(x_j)(x_1^2 + x_2^2) \, d\mathbb{V} & \int_\mathbb{V} -\rho(x_j)x_1x_2 \, d\mathbb{V} & \int_\mathbb{V} -\rho(x_j)x_1x_3 \, d\mathbb{V} \\
\int_\mathbb{V} -\rho(x_j)x_1x_2 \, d\mathbb{V} & \int_\mathbb{V} \rho(x_j)(x_2^2 + x_3^2) \, d\mathbb{V} & \int_\mathbb{V} -\rho(x_j)x_2x_3 \, d\mathbb{V} \\
\int_\mathbb{V} -\rho(x_j)x_1x_3 \, d\mathbb{V} & \int_\mathbb{V} -\rho(x_j)x_2x_3 \, d\mathbb{V} & \int_\mathbb{V} \rho(x_j)(x_1^2 + x_3^2) \, d\mathbb{V}
\end{pmatrix}.
\] (1.8)

Symbol \(\rho(x_j) \) je zkráceným vyjádřením závislosti hustoty na poloze, \(\rho(x_j) \equiv \rho(x_1, x_2, x_3) \).

POZNÁMKA: Integračními proměnnými ve vztazích (1.6), (1.7) a (1.8), vyjadřujícími celkovou hmotnost, položku srostu hmotností a složky tenzoru momentu setřívačnosti, jsou souřadnice \(x_1, x_2, x_3 \). Hmotnost tělesa je však obecně závislá i na čase, stejně jako integrační obor \(\mathbb{V} \). Těleso se totiž může nejen pohybovat, ale i deformovat. V důsledku toho jsou složky vektoru \(\vec{r}_0 \) složky tenzoru \(J \) a v některých případech i celková hmotnost obecně funkční čas.

Konkrétní formy, které nejde deformovat, například obdélníkové, složené jako v případě tělesa s diskrétním rozložením hmotností, týkající se poloměru \(R \) a vzhledem k nízké hustoty často obecně nezvážené a veličiny \(\vec{r}_0 \) a \(J \) jsou tedy konstanty.

Příklad 1.3. Tensor momentu setřívačnosti.

Určíme hmotnost, střed hmotností a tenzor momentu setřívačnosti stejnovětšího rotujícího kužele o hustotě \(\rho_0 \), poloměru podstavy \(R \) a výšce \(v \) vzhledem k souřadnicovým soustavě vyznačené s kuželem spojené podle Obr. 1.5.
1.1. TĚLESA A JEJICH MODELY

Plášť kužele je popsan rovnicí

\[x_3 = \frac{v}{R} \sqrt{x_1^2 + x_2^2}. \]

Při výpočtu použijeme válcových souřadnic. Jejich převod na souřadnice kartezské a zpět, včetně vyjádření objemového elementu, najdeme v kterékoliv příručce praktické matematiky.

\[x_1 = r \cos \varphi, \quad x_2 = r \sin \varphi, \quad x_3 = z, \quad dV = r \, dr \, d\varphi \, dz, \quad r \in [0, R], \quad \varphi \in [0, 2\pi]. \]

\[m = g_0 \int_0^R \int_0^\varphi \int_0^R r \, dz \, dr \, d\varphi = 2\pi g_0 \int_0^R r \left(1 - \frac{vr}{R}\right) dr = 2\pi g_0 \left(\frac{R^2}{2} - \frac{R^3}{3R}\right) = \frac{1}{3} \pi R^2 v g_0. \]

\[x_{0.1} = g_0 \int_0^{2\pi} \int_0^R \int_0^\varphi r^2 \cos \varphi \, dz \, dr \, d\varphi = g_0 \int_0^{2\pi} \int_0^R \cos \varphi \, dr \, d\varphi = 0, \]

\[x_{0.2} = g_0 \int_0^{2\pi} \int_0^R \int_0^\varphi r^2 \sin \varphi \, dz \, dr \, d\varphi = g_0 \int_0^{2\pi} \int_0^R \sin \varphi \, dr \, d\varphi = 0, \]

\[x_{0.3} = g_0 \int_0^{2\pi} \int_0^R \int_0^\varphi r^2 \cos \varphi \, dz \, dr \, d\varphi = g_0 \int_0^{2\pi} \int_0^R r \left(1 - \frac{vr}{R}\right) dr = \frac{\pi g_0}{m} \int_0^R \left(1 - \frac{vr}{R}\right) dr = \frac{\pi g_0}{m} \left(\frac{R^2}{2} - \frac{R^4}{4R^2}\right) = \frac{3v}{4}. \]

\[J_{11} = g_0 \int_0^{2\pi} \int_0^R (r^2 \sin^2 \varphi + z^2) r \, dz \, dr \, d\varphi = \frac{\pi g_0}{m} \int_0^R \left[r^3 \sin^2 \varphi \left(1 - \frac{vr}{R}\right) + \frac{r^3}{3} \left(1 - \frac{vr}{R}\right)^3\right] dr \, d\varphi = \frac{\pi g_0}{m} \int_0^R \left[\frac{R^4 v}{4} - \frac{R^6 v}{5R} + \frac{2\pi g_0 R^2 v}{3} \left\{\frac{R^2 v^3}{2} - \frac{R^2 v^3}{5R^2}\right\}\right] dr \, d\varphi = \frac{\pi g_0}{m} \int_0^R \left[\frac{R^4 v}{4} - \frac{R^6 v}{5R} + \frac{2\pi g_0 R^2 v}{3} \left\{\frac{R^2 v^3}{2} - \frac{R^2 v^3}{5R^2}\right\}\right] dr \, d\varphi = \frac{3}{20} m (R^2 + 4v^2), \]

\[J_{22} = g_0 \int_0^{2\pi} \int_0^R \int_0^\varphi (r^2 \cos^2 \varphi + z^2) r \, dz \, dr \, d\varphi = \frac{3}{20} m (R^2 + 4v^2), \]

\[J_{33} = g_0 \int_0^{2\pi} \int_0^R \int_0^\varphi (r^2 \cos^2 \varphi + r^2 \sin^2 \varphi) r \, dz \, dr \, d\varphi = \frac{3}{20} m R^2, \]

\[J_{12} = g_0 \int_0^{2\pi} \int_0^R \int_0^\varphi r^2 \sin \varphi \cos \varphi \, r \, dz \, dr \, d\varphi = 0, J_{13} = 0, J_{23} = 0. \]

Při výpočtu jsme použili vztahů

\[\int_0^{2\pi} \sin^2 \varphi \, d\varphi = \pi a \quad \text{a} \quad \int_0^{2\pi} \cos^2 \varphi \, d\varphi = \pi, \]

jejichž platnost snadno ověříme. Stačí použít vztahů

\[\int_0^{2\pi} \sin^2 \varphi = \frac{1 - \cos 2\varphi}{2} \quad \text{a} \quad \int_0^{2\pi} \cos^2 \varphi = \frac{1 + \cos 2\varphi}{2}. \]

Nyní již shromáždíme výsledky předchozích výpočtů:

\[m = \frac{\pi^2 g_0}{3}, \quad \vec{r}_0 = (0, 0, \frac{3v}{4}), \quad J = \begin{pmatrix} \frac{3}{20} m(R^2 + 4v^2) & 0 & 0 \\ 0 & \frac{3}{20} m(R^2 + 4v^2) & 0 \\ 0 & 0 & \frac{3}{10} m R^2 \end{pmatrix}. \]
1.2 Volné částice a vztažné soustavy

V předchozím odstavci jsme pro identifikaci polohy hmotných bodů, popřípadě objemových elementů kontinua, používali polohový vektor \(\vec{r} \), který představoval orientovanou spojnici počátku soustavy souřadnic a daného hmotného bodu či objemového elementu. Je tedy vidět, že konkrétní matematické vyjádření rozložení hmotnosti tělesa je závislé na volbě soustavy souřadnic. Z fyzikálního hlediska je kromě toho důležité, s jakým konkrétním objektem, vztažným tělesem, je soustava souřadnic pevně spojena. Dvojici \(S = (\text{vztazné těleso}, \text{soustava souřadnic}) \) nazýváme vztažnou soustavu. Často ji také značíme \(S = (O; x, y, z) \) nebo \(S = (O; \vec{e}_1, \vec{e}_2, \vec{e}_3) \), kde \(O \), \(x \), \(y \), \(z \) jsou počátek a osy kartézské soustavy souřadnic spojené pevně se vztažným tělesem, alternativní zadání představují vektory \(\vec{e}_1 \), \(\vec{e}_2 \) a \(\vec{e}_3 \) ortonormální báze, které určují směr souřadnicových os. Pochopení pojmu vztažné soustavy usnadníme, představíme-li si se vztažnou soustavou spojeného pozorovatele, který v ní provádí měření poloh hmotných bodů či elementů. Taková představa je samozřejmě pouze pomocnou, subjektivní počty pozorovatele nehrají roli. V dalším však budeme alternativně používat jak pojmy „vztazná soustava“, tak pojmy „pozorovatel“.

1.2.1 Časoprostor

Časoprostem, jak název napovídá, budeme mít na mysli „terén“ pro popis událostí. Každý děj lze totiž považovat za časový sled událostí, přičemž každá událost je charakterizována polohou místa, kde k ní došlo, a okamžikem, kdy nastala. Čas ani polohu místa v prostoru však nemůžeme určit absolutně. Dnes již víme, že Newtonův absolutní čas a absolutní prostor nemají reálný podklad. Polohu místa v prostoru (ktéří v klasické newtonovské mechanice považujeme za trojrozměrný a euklidovský) určujeme vždy vůči konkrétní vymezeným okolním objektům, čas měříme vzhledem ke zvolenému počátečnímu okamžiku.

Jak jsme již konstatovali v řadu odstavci, je třeba pro popis polohy hmotného bodu zvolit vztažnou soustavu, vůči níž budou jednotlivé polohy určovány. Měření času je vztaženo k předem zvolenému počátku časové osy.

Událost \(U \) je vzhledem ke zvolené vztažné soustavě a zvolenému počátečnímu okamžiku popsaná čtyřveříci údajů

\[
U = (t, \vec{r}) = (t, x_1, x_2, x_3).
\]

Tuto čtyřveřici lze chápat jako soubor souřadnic bodu ve čtyřrozměrném prostoru \(\mathbb{R} \times \mathbb{R}^3 \), kde \(\mathbb{R} \) je časová osa, představovaná jednorozměrným euklidovským prostorem, a \(\mathbb{R}^3 \) je trojrozměrný euklidovský prostor pro popis údajů o poloze události. Prostor \(\mathbb{R} \times \mathbb{R}^3 \) nazýváme časoprostem.
1.2. VOLNÉ ČÁSTICE A VZTAŽNÉ SOUSTAVY

Ze zkušeností vyplývá, že údaje o poloze a čase jsou sice relativní, tj. závislé na volbě vztažné soustavy a počátku časové osy, měření prostorové a časové „odlehlostí“ dvou událostí v newtonovské mechanice však jsou absolutní. Jestliže tedy soubory

\[U_1 = (t_1, \vec{r}_1)_S, \quad U'_1 = (t'_1, \vec{r}'_1)_{S'} \]

\[U_2 = (t_2, \vec{r}_2)_S, \quad U'_2 = (t'_2, \vec{r}'_2)_{S'} \]

popisují události \(U_1 \) a \(U_2 \) ve vztažných soustavách \(S = < O; \vec{e}_1, \vec{e}_2, \vec{e}_3 > \), \(S' = < O'; \vec{e}'_1, \vec{e}'_2, \vec{e}'_3 > \), kde v údajích o bodech \(O \) a \(O' \) je obsažena i informace o volbě počátku časové osy, pak obecně \(\vec{r}_1 \neq \vec{r}'_1, \quad t_1 \neq t'_1, \quad \vec{r}_2 \neq \vec{r}'_2, \quad t_2 \neq t'_2 \), avšak

\[\Delta \vec{r} = \vec{r}_2 - \vec{r}_1 = \vec{r}'_2 - \vec{r}'_1, \quad \Delta t = t_2 - t_1 = t'_2 - t'_1. \]

(1.10)

Tyto vztahy charakterizují nejobecnější vlastnosti časoprostoru, tzv. homogenitu a izotropnost prostoru a homogenitu času. Homogenitu a izotropnost prostoru lze vyjádřit i konstatovalině, že okolí všech bodů se jeví pozorovatelí jako identická, homogenita času představuje identičnost okolí všech bodů na časové osi.

Obr. 1.6: Popis událostí v časoprostoru

POZNÁMKA: Matematicky vyjádření obecných vlastností časoprostoru pomocí rovnic (1.10) je omezeno na newtonovskou mechaniku. V mechanice relativistické, v jejímž rámci neuplatní existence mezni rychlostí, je vyjádření těchto vlastností odlišné.

Následující tabulky poskytují přehled o rozmezí vzdáleností \(D \ [\text{m}] \) a trvání dějů \(T \ [\text{s}] \) od mikrověta až po svět vesmírných objektů.
Tabulka 1.2: Rozměry a vzdálenosti objektů

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Log D</th>
<th>Interakce</th>
</tr>
</thead>
<tbody>
<tr>
<td>proton</td>
<td>−15</td>
<td>silná nebo slabá</td>
</tr>
<tr>
<td>jádro</td>
<td>−14</td>
<td>silná nebo slabá</td>
</tr>
<tr>
<td>vzdálenost atomů v krystalu</td>
<td>−10</td>
<td>elektromagnetická</td>
</tr>
<tr>
<td>velké organické molekuly</td>
<td>−9</td>
<td>elektromagnetická</td>
</tr>
<tr>
<td>vzdálenosti molekul ve vzduchu</td>
<td>−8</td>
<td>elektromagnetická</td>
</tr>
<tr>
<td>krvínka</td>
<td>−5</td>
<td>elektromagnetická</td>
</tr>
<tr>
<td>člověk</td>
<td>0</td>
<td>elektromagnetická</td>
</tr>
<tr>
<td>hora</td>
<td>4</td>
<td>gravitační</td>
</tr>
<tr>
<td>Země</td>
<td>7</td>
<td>gravitační</td>
</tr>
<tr>
<td>Slunce</td>
<td>9</td>
<td>gravitační</td>
</tr>
<tr>
<td>sluneční soustava</td>
<td>13</td>
<td>gravitační</td>
</tr>
<tr>
<td>k nejbližší hvězdě</td>
<td>16</td>
<td>gravitační</td>
</tr>
<tr>
<td>naše Galaxie</td>
<td>20</td>
<td>gravitační</td>
</tr>
<tr>
<td>mezigałaktická vzdálenost</td>
<td>22</td>
<td>gravitační</td>
</tr>
<tr>
<td>kupy galaktických kup</td>
<td>25</td>
<td>gravitační</td>
</tr>
</tbody>
</table>
1.2. VOLNÉ ČÁSTICE A VZTAŽNÉ SOUSTAVY

Tabulka 1.3: Časové intervaly

<table>
<thead>
<tr>
<th>Děj – mikro</th>
<th>Log T</th>
<th>Děj – makro</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ–paprsky v kosmickém záření</td>
<td>−27</td>
<td></td>
</tr>
<tr>
<td>jaderné γ–záření</td>
<td>−21</td>
<td></td>
</tr>
<tr>
<td>rentgenové záření</td>
<td>−18</td>
<td></td>
</tr>
<tr>
<td>světlo</td>
<td>−15</td>
<td></td>
</tr>
<tr>
<td>knity atomů v mřížce</td>
<td>−13</td>
<td>electronické oscilace</td>
</tr>
<tr>
<td>rotace molekul</td>
<td>−12</td>
<td>rádiové vlhy</td>
</tr>
<tr>
<td></td>
<td>−6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>−3</td>
<td>zvukové vlhy</td>
</tr>
<tr>
<td></td>
<td>−1</td>
<td>rotace pulsarů</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>tep sníje</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>den = rotace Země</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>rok = oběh Země</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>oběh Halleyovy komety</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>precesa zemské osy</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>oběh Kohoutkovy komety</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>rotace Galaxie</td>
</tr>
</tbody>
</table>

1.2.2 Inerciální vztažné soustavy

Každé těleso v prostoru je vystaveno vlivu okolních objektů. Těleso na sebe navzájem působí, interagují. Tím vzájemně ovlivňují svůj pohyb. Těleso, nahrazené modelem hmotného bodu, které je od okolních objektů vzdáleno natolik, že jejich vliv je zanedbatelný, představuje tzv. volnou (izolovanou) částici. Model volné částice je samočinnější ideálizací, která se však v konkrétních případech může reálně velmi přibližit. Například sluneční soustava, nahrazená hmotným bodem umístěným v jejím středu hmotnosti, je velmi dobře představitelem volné částice, neboť je od nejbližšího vesmírného objektu (Proxima, α-Centauri) vzdálena zhruba čtyři světelné roky, tj. řádově 10^{16} metrů. Zlotozřímě-li počá-
tek O, vztažné soustavy s volnou částicí a souřadnicové ose velmi tak, aby libovolně tři volné částice tvořící s O tuhý čtyřstěn byly vůči nim v klidu (viz obr. 1.7), získáme inerciální vztažnou soustavu. Její fyzikalní význam pochopíme v další kapitole.

\[\text{TUHY ČTYŘSTĚN} \]

\[\text{Obr. 1.7: INERCIÁLNÍ VZTAŽNÁ SOSTAVA} \]

Inerciální vztažná soustava spojená se sluneční soustavou (počátkem je Slunce, ose jsou namířeny ke stálícím, Slunce i stálice chápány jako hmotné body) se nazývá Galileiová. Ostatní vztažné soustavy se nazývají neinerciální. Často užívaná je tzv. soustava laborní, spojená s povrchem Země (viz obr. 1.8).
Její neinerciálnost lze zanedbat, neprováděme-li příliš přesná či dlouhotrvající měření.

1.3 Mechanický stav částice a jeho časový vývoj

Pohyb částice (hmotného bodu) je plně popsan závislostí polohy na čase. Pokud bychom pro danou částici takovou závislost zadali, nemáme už vůbec nic na práci. Otázkou je, jak zjistit vektorovou funkci času \(\mathbf{r}(t) \), která pohyb částice plně určuje. Experiment ukazuje, že zákony mechaniky fungují tak, že na základě znalostí interakcí částice s okolními objekty a znalostí její polohy ve dvou různých okamžicích lze v principu určit její polohu v libovolném okamžiku. Slovo „v principu“ zde znamená, že něco je sice možné, otázkou však je, nakolik je to prakticky schůdné, jak vypadá formulace fyzikálních zákonitostí a jaké jsou matematické postupy, které k takové předpovědi reálně povedou. Při praktickém řešení není například výhodné vycházet ze zadání polohy ve dvou okamžicích. Ukazuje se, že důležitými pojmy pro předpověď pohybu částice jsou rychlost a zrychlení. Poloha a rychlost částice v daném okamžiku zadávají mechanický stav částice v tomto okamžiku. Veličinou, která je bezprostředně určena interakcí sledované částice s okolními objekty, je zrychlení. V dalším textu proto oba pojmy vyhodnocujeme. Jak si můžeme být posledními dvěma tvrzeními jistí? No přece — vyplývají z experimentu!
1.3.1 Poloha a její změny

Sledujme polohy částic vzhledem k vztažné soustavě S v časovém intervalu $[\alpha, \beta]$. Informace o polohách částic bude úplná, zadané-li v každém okamžiku $t \in [\alpha, \beta]$ její polohový vektor $\vec{r}(t)$. Vektorová funkce \vec{r} skalární proměnné t

$$\vec{r} = \vec{r}(t) = (x(t), y(t), z(t)), \quad t \in [\alpha, \beta],$$

zadaná třemi skalárními funkcemi $x(t), y(t), z(t)$, popisuje závislost polohového vektoru částice na čase. (Pro zjednodušení zápisů jsme místě x_1, x_2, x_3 použili pro označení kartézských složek vektoru \vec{r} neindexovaných symbolů x, y, z.) Koncový bod vektoru \vec{r}, umístěného v každém okamžiku v počátku soustavy souřadnic, opisuje křivku C, nazvanou trajektorie hmotného bodu. Její parametrické vyjádření představuje vztah (1.11). Rolí parametru hraje čas. Polohy částice nazýváme přímočarám, je-li její trajektorií část čámerky.

Obr. 1.9: Trajektorie hmotného bodu

Změna polohy hmotného bodu v časovém intervalu $[t, t+\Delta t]$ je charakterizována vektorovým posunutím (viz Obr. 1.9)

$$\Delta \vec{r} = \vec{r}(t+\Delta t) - \vec{r}(t).$$

(1.12)

1.3.2 Rychlost a zrychlení

Podíl

$$\langle \vec{v} \rangle_{[t, t+\Delta t]} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r}(t+\Delta t) - \vec{r}(t)}{\Delta t} = \frac{x(t+\Delta t) - x(t)}{\Delta t}, \frac{y(t+\Delta t) - y(t)}{\Delta t}, \frac{z(t+\Delta t) - z(t)}{\Delta t}$$

(1.13)
1.3. MECHANICKÝ STAV ČÁSTICE A JEHO ČASOVÝ VÝVOJ

určuje průměrnou rychlost částice v intervalu \([t, t + \Delta t]\) a jeho limitní hodnota pro \(\Delta t \to 0\)

\[
\vec{v}(t) = \lim_{\Delta t \to 0} \frac{\vec{r}(t + \Delta t) - \vec{r}(t)}{\Delta t},
\]

(1.14)

matematicky představující derivaci vektorové funkce \(\vec{r}(t)\) podle času, je okamžitá rychlost (zkráceně rychlost) částice v čase \(t\). Značíme

\[
\vec{v}(t) = \frac{d\vec{r}(t)}{dt} = \left(\frac{dx(t)}{dt}, \frac{dy(t)}{dt}, \frac{dz(t)}{dt}\right),
\]

(1.15)

nebo

\[
\vec{v}(t) = \dot{\vec{r}}(t) = (\dot{x}(t), \dot{y}(t), \dot{z}(t)) = (v_x(t), v_y(t), v_z(t)).
\]

POZNÁMKA: Všimněte si, že zatímco se průměrná rychlost vztahuje k časovému intervalu, je rychlost okamžitá závislá pouze na jediné hodnotě \(t\).

Z definice okamžitá rychlost jako limity rychlosti průměrné je zřejmé, že okamžitá rychlost má vždy směr tečny k trajektorii. Velikost okamžité rychlosti je

\[
v(t) = |\vec{v}(t)| = \sqrt{v_x^2(t) + v_y^2(t) + v_z^2(t)} = \sqrt{\dot{x}^2(t) + \dot{y}^2(t) + \dot{z}^2(t)}.\]

(1.16)

Pohyb částice nazýváme rovnoměrným, je-li velikost její rychlosti nezávislá na čase, tj. \(v(t) = \text{konst}\).

PŘÍKLAD 1.4. Průměrná a okamžitá rychlost prakticky.

Parametrické vyjádření trajektorie částice je dáno vztahy

\[
\vec{r}(t) = \begin{pmatrix} 2.00 \cos \frac{\pi t}{2}, 2.00 \sin \frac{\pi t}{2}, 0.00 \end{pmatrix} \text{ m},
\]

dkde \(\pi/2\) je hodnota veličiny v jednotkách \(s^{-1}\) (kruhová frekvence). Okamžitá rychlost je

\[
\vec{v}(t) = \dot{\vec{r}}(t) = \begin{pmatrix} -2.00 \frac{\pi}{2} \sin \frac{\pi t}{2}, 2.00 \frac{\pi}{2} \cos \frac{\pi t}{2}, 0.00 \end{pmatrix} \text{ m s}^{-1},
\]

\[
v(t) = \vec{v} = \sqrt{\dot{x}^2(t) + \dot{y}^2(t) + \dot{z}^2(t)} = 3.14 \text{ m s}^{-1} = \text{konst}.
\]

Platí \(\sqrt{\dot{x}^2(t) + \dot{y}^2(t)} = 2.00 \text{ m a } z = 0.00 \text{ m}\). Trajektorii částice je tedy kružnice o poloměru \(R = 2.00 \text{ m}\) se středem v počátku soustavy souřadnic, ležící v rovině \(z = 0.00 \text{ m}\). Částice se pohybuje rovnoměrně a vykoná jeden oběh za dobu \(T = 2\pi R = 4.00 \text{ s}\). Určíme průměrnou rychlost v časových intervalech \([t + \Delta t, t]\) pro \(t = 1.00 \text{ s a } \Delta t\) postupně 1.00 s, 0.50 s, 0.25 s, 0.12 s, 0.06 s, 0.03 s a okamžitou rychlost v čase \(t = 1.00 \text{ s}\). Budeme sledovat chování průměrné rychlosti se zmenšující se hodnotou \(\Delta t\). Výsledky shromáždí následující tabulka (\(\alpha\) je úhel, který svírá průměrná rychlost s osou \(x\)):
Tabulka 1.4: Okamžitá rychlost jako limita průměrné rychlosti

<table>
<thead>
<tr>
<th>Δt [s]</th>
<th>1,00</th>
<th>0,50</th>
<th>0,25</th>
<th>0,12</th>
<th>0,06</th>
<th>0,03</th>
<th>Δt → 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x(t + Δt)[m]</td>
<td>-2,00</td>
<td>-1,41</td>
<td>-0,77</td>
<td>-0,38</td>
<td>-0,19</td>
<td>-0,09</td>
<td>0,00</td>
</tr>
<tr>
<td>y(t + Δt)[m]</td>
<td>0,00</td>
<td>1,41</td>
<td>1,85</td>
<td>1,96</td>
<td>1,99</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>⟨v_x⟩ [ms⁻¹]</td>
<td>-2,00</td>
<td>-2,83</td>
<td>-3,06</td>
<td>-3,12</td>
<td>-3,14</td>
<td>-3,14</td>
<td>-3,14</td>
</tr>
<tr>
<td>⟨v_y⟩ [ms⁻¹]</td>
<td>-2,00</td>
<td>-1,17</td>
<td>-0,61</td>
<td>-0,30</td>
<td>-0,15</td>
<td>-0,07</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>⟨v⟩ [ms⁻¹]</td>
<td>2,83</td>
<td>3,06</td>
<td>3,12</td>
<td>3,14</td>
<td>3,14</td>
<td>3,14</td>
</tr>
<tr>
<td>α [°]</td>
<td>225</td>
<td>202</td>
<td>191</td>
<td>185</td>
<td>183</td>
<td>181</td>
<td>180</td>
</tr>
</tbody>
</table>

Obr. 1.10: Průměrná rychlost při Δt → 0
1.3. MECHANICKÝ STAV ČÁSTICE A JEHO ČASOVÝ VÝVOJ

Analogickým postupem jako okamžitou rychlost definujeme okamžité zrychlení. Podíl
\[
\langle \ddot{a} \rangle_{[t,t+\Delta t]} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v}(t + \Delta t) - \vec{v}(t)}{\Delta t}
\]
je tzv. průměrné zrychlení částice v intervalu \([t, t + \Delta t]\) a jeho limitou pro \(\Delta t \to 0\)
\[
\ddot{a}(t) = \lim_{\Delta t \to 0} \langle \ddot{a} \rangle_{[t,t+\Delta t]} = \lim_{\Delta t \to 0} \frac{\vec{v}(t + \Delta t) - \vec{v}(t)}{\Delta t}
\]
je okamžité zrychlení (zkrácené zrychlení) částice v čase \(t\).

OBR. 1.11: K DEFINICI ZRYCHLENÍ

Zrychlení je tedy derivací rychlosti a druhou derivací polohového vektoru. Píšeme
\[
\ddot{a}(t) = \frac{d^2\vec{r}(t)}{dt^2} = \left(\frac{dx^2(t)}{dt^2}, \frac{dy^2(t)}{dt^2}, \frac{dz^2(t)}{dt^2} \right) = (\ddot{x}(t), \ddot{y}(t), \ddot{z}(t)) = (a_x(t), a_y(t), a_z(t)), \]
nebo
\[
a(t) = |\ddot{a}(t)| = \sqrt{a_x^2(t) + a_y^2(t) + a_z^2(t)} = \sqrt{\ddot{x}^2(t) + \ddot{y}^2(t) + \ddot{z}^2(t)}.
\]

1.3.3 Geometrické charakteristiky trajektorie

Rychlost a zrychlení jsou nejdůležitější kinematičké veličiny spjaté s trajektorii částice. Je však užitečné definovat ještě další charakteristiky, poskytující názornou geometrickou představu o tvaru trajektorie. Jsou jimi délka oblouku, jednotkové vektory tečny, kladná normály a binormály, křivost a torze.

Délkou oblouku trajektorie, opsanou hmotným bodem v časovém intervalu \([s(t), \alpha, \beta]\), je dráha, kterou hmotný bod urazil mezi okamžiky \(\alpha\) a \(\beta\). Označíme-li \(s(t)\) dráhu uraženou od okamžiku \(\alpha\) do okamžiku \(t\), je
24 KAPITOLA I. POJMY KLÁSICKÉ MECANIKY — POHYB A JEHO POPIS

\[v(t) = \frac{ds(t)}{dt}, \quad \text{tj.} \quad s(\beta) = \int_{\alpha}^{\beta} v(t) \, dt. \quad (1.20) \]

Vztah (1.20) pro délku oblouku je sice velmi názorný, zašlouží však korektnější odvození.

Obr. 1.12: K výpočtu délky oblouku

Navržeme dělení \(D \) časového intervalu \([\alpha, \beta] \) soubor okamžítek \(D = \{ t_0, t_1, \ldots, t_n \} \), kde \(\alpha = t_0 < t_1 < \ldots < t_n = \beta \). V okamžicích \(t_0, t_1, \ldots, t_n \) se hmotný bod nachází na trajektorii v bodech \(B_0, B_1, \ldots, B_n \), které jsou koncevými body vektoru \(\vec{r}_0, \vec{r}_1, \ldots, \vec{r}_n \). Tyto body rozdělují oblouk trajektorie \(B_0B_n \) na úsekky o délce \(\Delta s_0, \Delta s_1, \ldots, \Delta s_{n-1} \), přičemž platí

\[s(\beta) = \sum_{j=0}^{n-1} \Delta s_j. \]

Je-li dělení dostatečně jemné, lze každý z úseků \(\Delta s_j \) nahradit dělou úseků \(B_jB_{j+1}, tj. \)

\[s(\beta) = \sum_{j=0}^{n-1} |\Delta \vec{r}_j| = \sum_{j=0}^{n-1} \left| \frac{\vec{r}(t_{j+1}) - \vec{r}(t_j)}{t_{j+1} - t_j} \right| (t_{j+1} - t_j) = \sum_{j=0}^{n-1} |\langle \vec{v}(t_j, t_{j+1}) \rangle | \Delta t_j, \quad (1.21) \]

kde \(\Delta t_j = t_{j+1} - t_j \). Zlepšováním dělení se vyjádření délky oblouku \(s(\beta) \) pomocí vztahu (1.21) zpřesňuje. Kritériem jemnosti dělení \(D \) je jeho norma (většina největšího dílku)

\[\nu(D) = \max \{ \Delta t_j \mid j \in \{0, \ldots, n-1\} \}. \]

Pro \(\nu(D) \to 0 \) přechází diskrétní indexovaná proměnná \(t_j \) v proměnnou spojitou, průměrná rychlost \(\langle \vec{v}(t) \rangle \) v rychlost okamžitou a surace v integraci:

\[s(\beta) = \lim_{\nu(D)\to 0} \sum_{j=0}^{n-1} |\langle \vec{v}(t_j, t_{j+1}) \rangle | \Delta t_j = \int_{\alpha}^{\beta} |\vec{v}(t)| \, dt. \quad (1.22) \]

Vztahem (1.22) je nouzově definován, z matematického hlediska, křivkový integrál prvního typu z identicky jednotkové funkce po křivek \(C \). Značíme

\[\nu(D) = \max \{ \Delta t_j \mid j \in \{0, \ldots, n-1\} \}. \]
1.3. MECHANICKÝ STAV ČÁSTICE A JEHO ČASOVÝ VÝVOJ

\[s(\beta) = \int_{C} ds = \int_{a}^{\beta} \sqrt{\dot{x}^2(t) + \dot{y}^2(t) + \dot{z}^2(t)} \, dt, \]

(1.23)

kde \(\dot{r}(t) = (\dot{x}(t), \dot{y}(t), \dot{z}(t)) \) představuje parametrické vyjádření integračního oboru \(C \).

Zobecněme definici křivkového integrálu prvého typu na případ libovolné funkce předepsaných vlastností: Nechť \(C : \dot{r} = \dot{r}(t) = (x(t), y(t), z(t)) \) je křivka, pro níž jsou derivace \(\dot{x}(t), \dot{y}(t), \dot{z}(t) \) spojité na intervalu \([a, \beta] \) a \(v(t) \neq 0 \), výjimkou nejvíce konečného počtu bodů, a pro níž má integrál (1.23) konečnou hodnotu (tzv. po částech hladká křivkově kladná křivka). Nechť \(f(x, y, z) \) je funkce spojitá na otevřené množině \(A \subset \mathbb{R}^3 \) obsahující křivku \(C \).

Pak existuje integrál

\[\int_{C} f(x, y, z) \, ds = \int_{a}^{\beta} f(x(t), y(t), z(t)) \sqrt{\dot{x}^2(t) + \dot{y}^2(t) + \dot{z}^2(t)} \, dt \]

(1.24)

nazvaný křivkovým integrálem prvého typu z funkce \(f(x, y, z) \) po křivce \(C \).

Jednotkový vektor tečný \(\vec{t}(t) \) k trajektorii v bodě, v němž se nachází částice v okamžiku \(t \), má směr shodný se směrem její rychlosti, tj.

\[\vec{t}(t) = \frac{\vec{v}(t)}{v(t)}. \]

(1.25)

Skutečnost, že vektor \(\vec{t}(t) \) je jednotkový, lze zapsat ve tvaru \(\vec{t}^2 = 1 \). Derivováním tohoto vztahu dostaneme \(2\vec{t}(t)\vec{\dot{t}}(t) = 0 \), odkud je zřejmé, že vektory \(\vec{t}(t) \) a \(\vec{\dot{t}}(t) \) jsou kolmé. Vektor

\[\vec{u}(t) = \frac{\vec{\dot{t}}(t)}{|\vec{\dot{t}}(t)|} \]

(1.26)

je rovněž jednotkový. Nazývá se **jednotkovým vektem hlavní normály** k trajektorii. Pro přímocárý polohy je \(\vec{\dot{t}} = 0 \) a vektor hlavní normály není definován.

Jednotkový vektor bínormály je definován vztahem

\[\vec{\nu}(t) = \vec{t}(t) \times \vec{u}(t). \]

(1.27)

Pro přímocárých poloh bíve rovněž není definován. Vektory \(\vec{t}(t), \vec{u}(t), \vec{\nu}(t) \) tvoří ortonormální právotočivou bázi, spjatou s bodem trajektorie, v němž se částice nachází v okamžiku \(t \). V geometrické terminologii se tato báze nazývá **pohyblivý referenční systém**.

Jednotkový vektor \(\vec{u}(t) \), určený vztahem (1.26), představuje jeden z nekonečně mnoha směrů kolmého k tečné trajektorii v daném bodě. Tyto směry vyplývají celou rovinou. Vzniklé otázky, proč právě směr daný vektem \(\vec{u}(t) \) je mezi ostatními preferovaný. Tato preference souvisí s problémem náhady obecné prostorové křivky \(C \) v okolí daného bodu křivkou roviny.
Označme podle Osn. 1.13 \(\sigma_{t,t+\Delta t} \) rovinu určenou koncovým bodem \(B(t) \) poloohého vek- toru \(\vec{r}(t) \) a jednotkovými vektory \(\vec{r}(t) \) a \(\vec{r}(t+\Delta t) \). Tuto rovinu se „přeprvku“ ke křivec \(\mathcal{C} \) v okolí bodu \(B(t) \) tím lépe, čím je \(\Delta t \) menší. Limžním případem rovin \(\sigma_{t,t+\Delta t} \) pro \(\Delta t \to 0 \) je tzv. oskulační rovina \(\sigma(t) \). Vzhledem k tomu, že při \(\Delta t \to 0 \) vektor vektor \(\vec{r}(t) \) a \(\vec{r}(t+\Delta t) \) splnou, je těba najít jiný vhodný vektor, který spojuje s bodem \(B(t) \) a vekterem \(\vec{r}(t) \) ur- čuje rovinu \(\sigma(t) \), avšak při \(\Delta t \to 0 \) zůstává s vekterem \(\vec{r}(t) \) nekolmý. Tuto vlastnost má vektor \(\vec{r}(t+\Delta t)-\vec{r}(t) \), jejíž limžním případem je vektor \(\vec{r}(t) = \lim_{\Delta t \to 0} \frac{\vec{r}(t+\Delta t)-\vec{r}(t)}{\Delta t} \). Oskulační rovina \(\sigma(t) \) je tedy určena bodem \(B(t) \) a vektory \(\vec{r}(t) \) a \(\vec{n}(t) \). Na základě tohoto výsledku je preferencia vektoru \(\vec{n}(t) \) mezi všemi směry kolmými k tečně pochopitelná.

Křivost trajektorie v daném bodě \(B(t) \) je skalární veličina, která názorně cha- rakterizuje změnu směru tečny vztaženou k jednotkově délce oblouku:

\[
\kappa(s) = \lim_{\Delta s \to 0} \frac{\Delta \vec{s}}{\Delta s} = \lim_{\Delta s \to 0} \frac{\vec{r}(s+\Delta s) - \vec{r}(s)}{\Delta s} = \left| \frac{d\vec{s}}{ds} \right|.
\] (1.28)
Obr. 1.14: K rozkladu zrychlení

Poznámka: Předpokládáme, že funkce \(s(t) \) je na intervalu \([\alpha, \beta] \) rostoucí. Existuje k ní tedy funkce inverzní, \(t(s) \). Proto lze vyjádřit kinematické veličiny jako funkce délky oblouku, speciálně \(\tau = \tau(s) \).

Platí
\[
\left| \frac{d\vec{\tau}}{dt} \right| = \left| \frac{d\tau[s(t)]}{ds} \right| = \left| \frac{d\vec{\tau}}{ds} \right| = \kappa(t)v(t).
\]

Odtud
\[
\kappa(t) = \frac{|\dot{\vec{\tau}}(t)|}{v(t)}.
\]

Poloměr křivosti je převrácenou hodnotou křivosti:
\[
R(t) = \kappa^{-1}(t) = \frac{v(t)}{|\tau(t)|}.
\]

Analogickým způsobem je definována *torze* trajektorie v daném bodě, která charakterizuje odchylku křivky od rovinosti:
\[
\gamma(s) = \lim_{\Delta s \to 0} \frac{\Delta \vec{\nu}}{\Delta s} = \lim_{\Delta s \to 0} \frac{\vec{\nu}(s + \Delta s) - \vec{\nu}(s)}{\Delta s} = \left| \frac{d\vec{\nu}}{ds} \right|,
\]
\[
\gamma(t) = \frac{|\dot{\vec{\nu}}(t)|}{v(t)}.
\]

Oskulační kružnicí nazývame kružnicí, která v okolí daného bodu „nejlépe aproximuje“ křivku \(\vec{C} \). Leží v oskulační rovině, její poloměr je \(R(t) \) a její střed \(S(t) \) je koncovým bodem vektoru \(\vec{r}(t) + R(t)\vec{n}(t) \).

Příklad 1.5. Charakteristiky šroubovice.
28 KAPITOLA I. POJMY KLASICKÉ MECHANIKY — POHYB A JEHO POPISE

Trajektorie částice je na intervalu \([0, \frac{2\pi}{\omega}] \) parametricky zadaná takto:

\[
\vec{r}(t) = (R \cos \omega t, R \sin \omega t, bt),
\]

kde \(a, b, \omega \) jsou kladné konstanty. (Trajektorii je jeden závit šroubovice — viz Obr. 1.15.) Určíme všechny doposud definované kinematické veličiny.

Obr. 1.15-a: K příkladu 1.5
\(\vec{v}(t) = \vec{\tau}(t) = (-R\omega \sin \omega t, R\omega \cos \omega t, b), v(t) = \sqrt{R^2 \omega^2 + b^2} = \text{konst.}, \)

\(\vec{a}(t) = \vec{\tau}(t) = (-R\omega^2 \cos \omega t, -R\omega^2 \sin \omega t, 0), a(t) = R\omega^2 = \text{konst.}, \)

\[s(t) = \int_0^t \sqrt{R^2 \omega^2 + b^2} \, dt = t \sqrt{R^2 \omega^2 + b^2}, s \left(\frac{2\pi}{\omega} \right) = \frac{2\pi}{\omega} \sqrt{R^2 \omega^2 + b^2}, \]

\(\vec{\tau}(t) = \left(-\frac{R\omega}{\sqrt{R^2 \omega^2 + b^2}} \sin \omega t, \frac{R\omega}{\sqrt{R^2 \omega^2 + b^2}} \cos \omega t, \frac{b}{\sqrt{R^2 \omega^2 + b^2}} \right), \)

\(\vec{\tau}(t) = \left(-\frac{R\omega^2}{\sqrt{R^2 \omega^2 + b^2}} \cos \omega t, -\frac{R\omega^2}{\sqrt{R^2 \omega^2 + b^2}} \sin \omega t, 0 \right), \)

\(\vec{a}(t) = (-\cos \omega t, -\sin \omega t, 0), \)

\(\vec{v}(t) = \left(\frac{b}{\sqrt{R^2 \omega^2 + b^2}} \sin \omega t, -\frac{b}{\sqrt{R^2 \omega^2 + b^2}} \cos \omega t, \frac{R\omega}{\sqrt{R^2 \omega^2 + b^2}} \right), \)
POZNÁMKA: Přiměřenost definic křivoči a torze pocházíme tak, že prověříme, zda v případech zvláště názorných dává jí očekávané výsledky. V případě rovinné křivočky je očekávaná hodnota torze nulová. Současně je \(\tilde{\nu}(t) = \) konst., takže \(\tilde{\nu}(t) \equiv 0 \). Odtud skutečně \(\gamma(t) \equiv 0 \). U kružnice očekáváme, že její poloměr křivočké bude bez ohledu na konkrétní parametrizaci konstantní a roven poloměru kružnice, zatímco u přímky bude křivočka trvale nulová.

Zvolme parametrické vyjádření kružnice o poloměru \(R \) ve tvaru
\[
\tilde{r}(t) = (R \cos \varphi(t), R \sin \varphi(t), 0),
\]

kde \(\varphi(t) \) je libovolná rostoucí funkce času, tj. \(\dot{\varphi}(t) > 0 \).

\[
\tilde{r}(t) = (-\dot{\varphi}(t) R \sin \varphi(t), \dot{\varphi}(t) R \cos \varphi(t), 0), \quad v(t) = |\dot{\varphi}(t)| = R = \dot{\varphi}(t) R,
\]

\[
\ddot{r}(t) = (-\sin \varphi(t), \cos \varphi(t), 0),
\]

\[
\ddot{r}(t) = (-\dot{\varphi}(t) \cos \varphi(t), -\dot{\varphi}(t) \sin \varphi(t), 0), \quad |\ddot{r}(t)| = |\dot{\varphi}(t)| = \dot{\varphi}(t).
\]

Pak
\[
R(t) = \frac{v(t)}{|\dot{r}(t)|} = R,
\]

což odpovídá představě.

Příklad vyjádříme parametricky takto: \(\tilde{r}(t) = \tilde{r}_0 + \int f(t) \), kde \(\tilde{r} \) je jednotkový směrovec vektor přímky a \(f(t) \) je libovolná rostoucí funkce času. Pak
\[
\tilde{r}(t) = \int f(t) \tilde{r}, \quad v(t) = \int f(t), \quad \dot{r}(t) = \tilde{r}, \quad \ddot{r} \equiv 0, \quad \nu(t) \equiv 0.
\]

Poznámejme, že pro přímkovou trajektorii nejsou výrazy (1.26) a (1.27) definovány. Vektory \(\tilde{r}(t) \) a \(\tilde{r}(t) \) nejsou určeny jednoznačně, stejně jako osculační rovinu.

Příklad 1.6. Geometrické charakteristiky trajektorie pomocí \(\tilde{r}(t) \).

Vyjádříme geometrické charakteristiky trajektorie \(C : \tilde{r} = \tilde{r}(t), \ t \in [\alpha, \beta] \), pomocí vektorové funkce \(\tilde{r}(t) \) a jejich derivací s využitím operací skalárního a vektorového součtu. Pro zjednodušení zápisu upuštěme od explikativního vyplývání argumentu \(t \) u časově závislých funkcí.

- Délka obalu trajektorie:
\[
s(\beta) = \int_\alpha^\beta |\tilde{r}| \, dt = \int_\alpha^\beta \sqrt{\dot{r}^2} \, dt.
\]

- Polohový reper:
\[
\varphi = \frac{\dot{r}}{\sqrt{\dot{r}^2}}
\]
\[\dot{p} = \frac{d}{dt} \left(\frac{\dot{p}}{\sqrt{\ddot{p}}^2 - (\dot{\tau})^2} \right) = \frac{\dot{p} \times (\dot{p} \times \dot{\tau})}{(\ddot{p})^2}, \]

\[\ddot{p} = \frac{(\dot{p} \times (\dot{p} \times \dot{\tau}))^2}{(\ddot{p})^2} = \frac{\dot{p} \times (\dot{p} \times \dot{\tau})}{(\ddot{p})^2}, \quad \Rightarrow \quad |\dot{p}| = \frac{\sqrt{(\ddot{p})^2 - (\dot{\tau})^2}}{\ddot{p}}, \]

\[\dot{\nu} = \frac{\dot{p} \times (\dot{p} \times \dot{\tau})}{(\ddot{p})^2} = \frac{\dot{p} \times \dot{p}}{\sqrt{(\ddot{p})^2 - (\dot{\tau})^2}} = \frac{\dot{p} \times \dot{p}}{|\dot{p} \times \dot{p}|}. \]

\[\gamma = \frac{(\dot{\nu})^2}{(\ddot{p})^2}, \quad \kappa = \frac{\sqrt{(\dot{\nu})^2(\dot{v})^2 - (\ddot{\nu})^2}}{(\ddot{p})^2} = \frac{\dot{\nu} \times (\ddot{\nu} \times \dot{\nu})}{(\ddot{p})^2}. \]

1.3.4 Tečné a normálové zrychlení

Velmi užitečné a názorné je vyjádření klíčových kinematických veličin, rychlosti a zrychlení, v pohyblivé leži tvořené vektory \(\vec{v}(t), \vec{u}(t), \vec{\nu}(t) \). Užijeme při tom vztahů (1.25), (1.26) a (1.30):

\[\vec{v}(t) = v(t) \vec{\tau}(t), \]

\[\vec{\nu}(t) = \frac{d}{dt}(v(t) \vec{\tau}(t)) = \dot{v}(t) \vec{\tau}(t) + v(t) \vec{\nu}(t) = \dot{v}(t) \vec{\tau}(t) + \frac{v^2(t)}{R(t)} \vec{\nu}(t). \]

Odtud

\[\vec{\nu}(t) = \vec{a}_r(t) + \vec{a}_n(t), \quad (1.33) \]

kde vektory

\[\vec{a}_r(t) = \dot{v}(t) \vec{\tau}(t), \quad \vec{a}_n(t) = \frac{v^2(t)}{R(t)} \vec{\nu}(t) \quad (1.34) \]

představují tečné a normálové zrychlení. Okamžité zrychlení je součtem zrychlení tečného a normálového a leží tedy v osculační rovině. Ze vztahu (1.34)
32KAPITOLA 1. POJMYKLASSICKÉ MECHANIKY — POHYB A JEHO POPIS

vidíme, že v případě rovnoměrného pohybu, kdy \(v(t) \) je konstantní, je tečné zrychlení nulové. V případě, kdy vektor \(\vec{n} \) není definován (přímočarý pohyb), je celkový zrychlení shodné se zrychlením tečným. Normálové zrychlení \(\vec{a}_n = \vec{a} - \vec{a}_r \) je pak nulové. Průměty zrychlení do směru tečny a hlavní normály mají tedy velmi názornou interpretaci: Tečné zrychlení souvisí se změnou velikosti rychlosti a zrychlení normálové určuje změnu směru rychlosti.

POZNÁMKA: Při výpočtu normálového zrychlení často s výhodou používáme vztah \(\vec{a}_n = \vec{a} - \vec{a}_r \).

Příklad 1.7. Tečné a normálové zrychlení na šroubovici.

Určíme tečné a normálové zrychlení částice, jejíž trajektorii jsme diskutovali v příkladu 1.5. S využitím výsledků tohoto příkladu dostáváme: \(\vec{a}_r = \vec{0} \), \(\vec{a}_n = \vec{a} \).

Příklad 1.8. Tečné a normálové zrychlení pomocí \(\vec{r}(t) \).

 Vyjádříme tečné a normálové zrychlení pomocí vektorové funkce \(\vec{r}(t) \) a jejich derivací. Využijeme výsledků příkladu 1.6.

\[
\vec{a}_r = \frac{d\vec{v}}{dt} = \frac{\dot{\vec{r}}^2}{\vec{r}^2} \vec{r} \quad \text{a} \quad \vec{a}_n = \vec{a} - \vec{a}_r = \frac{\dot{\vec{r}}^2 - \dot{\vec{r}} \vec{\omega} \times \dot{\vec{r}}}{\vec{r}^2}.
\]

1.3.5 Úhlové charakteristiky pohybu částice

Zvláště jednoduchým a pro aplikace velmi užitečným případem pohybu je pohyb po kružnici. Nejobecnější pohyb po kružnici je při vhodné volbě soustavy souřadnic popsána parametrickými rovnicemi tvaru

\[
\vec{r}(t) = (R \cos \varphi(t), R \sin \varphi(t), 0),
\]

kde \(\varphi(t) \) je libovolná funkce času. Tato funkce vyjadřuje úhlovou polohu hmotného bodu na kružnici o poloměru \(R \) v okamžiku \(t \).
1.3. MECHANICKÝ STAV ČÁSTICE A JEHO ČASOVÝ VÝVOJ

OBR. 1.16: POHyb PO KRUŽNICI

Úhel \(\varphi(t) \) je měřen jako kladný proti směru chodu hodinových ručiček. Vzhledem k vazebním podmínkám kladeným na pohyb částice \(x^2(t) + y^2(t) = R^2, \ z(t) = 0 \) je popis její polohy pomocí funkce \(\varphi(t) \) úplný. Úhlové poloze lze přisoudit vektorový charakter vztahem

\[
\vec{\varphi}(t) = \varphi(t)\vec{e}_3.
\] (1.36)

Veličiny

\[
\vec{\omega}(t) = \dot{\varphi}(t)\vec{e}_3 = (0, 0, \dot{\varphi}(t)),
\]
\[
\vec{\varepsilon}(t) = \ddot{\varphi}(t)\vec{e}_3 = (0, 0, \ddot{\varphi}(t))
\]
představují tzv. úhlovou rychlost a úhlové zrychlení. Výjádříme rychlost a zrychlení pomocí úhlových veličin a naopak:

\[
\vec{v}(t) = (-R\dot{\varphi}(t) \sin \varphi(t), R\dot{\varphi}(t) \cos \varphi(t), 0),
\]
\[
\vec{a}(t) = (-R\ddot{\varphi}(t) \sin \varphi(t) - R\dot{\varphi}^2(t) \cos \varphi(t), R\ddot{\varphi}(t) \cos \varphi(t) - R\dot{\varphi}^2(t) \sin \varphi(t), 0) =
\]
\[
= (-R\ddot{\varphi}(t) \sin \varphi(t), R\ddot{\varphi}(t) \cos \varphi(t), 0) + (-R\dot{\varphi}^2(t) \cos \varphi(t), -R\dot{\varphi}^2(t) \sin \varphi(t), 0),
\]

\[
\vec{\varepsilon}(t) = \vec{\omega}(t) \times \vec{r}(t) = -R\vec{\omega}(t) \times \vec{n}(t),
\]
\[
\vec{\alpha}_r = \vec{\varepsilon}(t) \times \vec{r}(t) = -R\vec{\varepsilon}(t) \times \vec{n}(t), \quad \vec{\alpha}_n = R\vec{\omega}^2(t) \vec{n}(t).
\] (1.38) (1.39)

Vektorovým vynásobením rychlosti [1.38], resp. tečného zrychlení ze vztahu [1.39] vektem \(\vec{n}(t) \) zprava dostáváme

\[
\vec{v}(t) \times \vec{n}(t) = -R\vec{\omega}(t) \times \vec{n}(t) \times \vec{n}(t) = R\vec{\omega}(t),
\]
\[
\vec{a}_r(t) \times \vec{n}(t) = -R(\vec{\varepsilon}(t) \times \vec{n}(t)) \times \vec{n}(t) = R\vec{\varepsilon}(t),
\]
\[
\vec{a}_n(t) \times \vec{n}(t) = -R(\vec{\varepsilon}(t) \times \vec{n}(t)) \times \vec{n}(t) = R\vec{\varepsilon}(t).
\]

3AKAPITOLA I. POJMY KLASICKÉ MECHANIKY — POHYB A JEHO POPIS

\[\ddot{\omega}(t) = \frac{\vec{v}(t) \times \vec{n}(t)}{R}, \quad \varepsilon(t) = \frac{\vec{a}_r(t) \times \vec{n}(t)}{R}. \quad (1.40) \]

Pomocí vztahů (1.40) zobecníme definice úhlových rychlostí a úhlového zrychlení na případ libovolného křivočarého pohybu:

\[\ddot{\omega}(t) = \frac{\vec{v}(t) \times \vec{n}(t)}{R(t)}, \quad \varepsilon(t) = \frac{\vec{a}_r(t) \times \vec{n}(t)}{R(t)}. \quad (1.41) \]

Toto zobecnění je dán o možnosti náhrady pohybu v infinitesimálně blízkém okolí každého bodu na obecné trajektorii pohybu po přelomu osculační kružnici.

Příklad 1.9. Úhlové veličiny pomocí \(\vec{r}(t) \).

Vyjadření úhlových veličin \(\ddot{\omega}(t) \) a \(\varepsilon(t) \) pomocí vektorové funkce \(\vec{r}(t) \) a jejích derivací je následující:

\[\ddot{\omega} = \kappa \hat{v} \times \vec{n} = \hat{r} \times \frac{\hat{r}^2 - \hat{\vec{r}}(\hat{r})}{\sqrt{\hat{r}^2 - \hat{\vec{r}}(\hat{r})^2}} \sqrt{\hat{r}^2 - \hat{\vec{r}}(\hat{r})^2} = \hat{r} \times \frac{\hat{r}}{\hat{r}^2}, \]

\[\varepsilon = \kappa \hat{v} \times \vec{n} = \frac{\hat{\vec{r}}(\hat{r})}{\hat{r}^2} \times \frac{\hat{r} - \hat{\vec{r}}(\hat{r})}{\sqrt{\hat{r}^2 - \hat{\vec{r}}(\hat{r})^2}} \sqrt{\hat{r}^2 - \hat{\vec{r}}(\hat{r})^2} = \frac{(\hat{r} \times \hat{r})}{\hat{r}^2}. \]

Při výpočtu jsme využili výsledků příkladů 1.6 a 1.8.

1.3.6 Obráčená úloha: Od zrychlení k trajektorii I

V dosavadních úvahách jsme vycházeli ze znalosti trajektorie hmotného bodu zadané parametricky vektorovou funkcí času \(\vec{r} = \vec{r}(t) \), z něž bylo možné určit všechny geometrické charakteristiky trajektorie i důležité kinetické veličiny. V konkrétních fyzikálních situacích však budeme postaveni před úlohu právě opačnou, jejímž cílem bude parametrické rovnice trajektorie teprve nalezít, a to na základě vyjadření zrychlení v závislosti na polohě částice, její rychlosti a na čase. K závislosti uvedenému typu vede matematická formulace klisových zákonů mechaniky, tzv. pohybových zákonů, které uvádějí do souvislosti kinetické veličiny charakterizující pohyb částice a její interakce s okolními objekty. Přesvědčíme se o tom ve třetím kapitole. Matematicky nejčastěji řešenou obrácenou úlohou odpovídá situaci, kdy pohybové zákony vedou k vyjadření zrychlení jako pouhě funkce času. V takových případech lze parametrické vyjádření trajektorie získat přímou integrací. I fyzikálně jsou tyto situace reálné. Představují například pohyb částic v homogenních časově proměnných i neproměnných polích.

Předpokládejme, že zrychlení je zadáno spojitém vektorovou funkcí času \(\vec{a} = \vec{a}(t) \). Rychlost částice je pak dána vektorovou funkcí \(\vec{v} = \vec{v}(t) \) vyhovující vztahu (1.19), tj. \(\frac{d\vec{v}(t)}{dt} = \vec{a}(t) \). Tato funkce není určena jednoznačně. Vztah (1.19)
chápaný jako rovnice pro neznámou vektorovou funkci \(\vec{v}(t) \) má nekonečně mnoho řešení navzájem se lišící o konstantní vektor. Nechť \(\vec{v}_p(t) \) je libovolné z těchto řešení, tzv. \textit{partikulární řešení} rovnice (1.19). Pak vztah

\[
\vec{v}(t) = \vec{v}_p(t) + \vec{C},
\]

(1.42)

kde \(\vec{C} \) je libovolný konstantní vektor, popisuje všechny vektorové funkce, které rovnici vyhovují a představuje její \textit{obecné řešení}. Konkrétní fyzikální situaci, tj. pohybu částice po její trajektorii, však musí odpovídat jednoznačně určitý vektor \(\vec{C} \). Zjistí ji lze jen tehdy, je-li známa rychlost částice v některém okamžiku, například pro \(t = 0 \):

\[
\vec{v}(0) = \vec{v}_0.
\]

(1.43)

Uvedený vztah představuje tzv. \textit{počáteční podmínku} pro řešení rovnice \(\frac{d\vec{v}(t)}{dt} = \vec{a}(t) \). Tato podmínka je vektorová a je ekvivalentní třem podmínkám skalárním: \(v_x(0) = v_{0x}, v_y(0) = v_{0y}, v_z(0) = v_{0z} \). Dosazením počáteční podmínky do obecného řešení (1.42) dostaneme \(\vec{C} = \vec{v}_0 - \vec{v}_p(0) \). Dané konkrétní situaci pak odpovídá partikulární řešení

\[
\vec{v}(t) = \vec{v}_p(t) - \vec{v}_p(0) + \vec{v}_0.
\]

(1.44)

Postup vedoucí k nalezení parametrického vyjádření trajektorie je ze zcela analogický a vede k výsledku

\[
\vec{r}(t) = \vec{r}_p(t) - \vec{r}_p(0) + \vec{r}_0,
\]

(1.45)

kde \(\vec{r}_p(t) \) je libovolná z vektorových funkcí vyhovujících rovnici \(\frac{d\vec{r}(t)}{dt} = \vec{v}(t) \) a \(\vec{r}(0) = \vec{r}_0 \) představuje počáteční polohu částice. Výsledky (1.44) a (1.45) řešení obrácené úkoly lze zapsat také ve tvaru

\[
\vec{v}(t) = \vec{v}(0) + \int_{0}^{t} \vec{a}(\tau) d\tau,
\]

(1.46)

\[
\vec{r}(t) = \vec{r}(0) + \int_{0}^{t} \vec{v}(\tau) d\tau = \vec{r}(0) + \vec{v}(0)t + \int_{0}^{t} \left[\int_{0}^{\tau} \vec{a}(\tau') d\tau' \right] d\tau,
\]

(1.47)

nebo obecněji

\[
\vec{v}(t) = \vec{v}(t_0) + \int_{t_0}^{t} \vec{a}(\tau) d\tau,
\]

(1.48)

\[
\vec{r}(t) = \vec{r}(t_0) + \int_{t_0}^{t} \vec{v}(\tau) d\tau = \vec{r}(t_0) + \vec{v}(t_0)(t - t_0) + \int_{t_0}^{t} \left[\int_{t_0}^{\tau} \vec{a}(\tau') d\tau' \right] d\tau.
\]

(1.49)
Je vidět, že pro nalezení parametrického vyjádření trajektorie ze známé časové závislosti zrychlení je třeba zadat ještě počáteční rychlost a počáteční polohu částice. Soubor údajů

\[
(r(t_0), \vec{v}(t_0)) = (x(t_0), y(t_0), z(t_0), v_x(t_0), v_y(t_0), v_z(t_0))
\]

určuje počáteční stav částice, soubor

\[
(r(t), \vec{v}(t)) = (x(t), y(t), z(t), v_x(t), v_y(t), v_z(t))
\]

charakterizuje mechanický stav částice v obecném okamžiku. Znakost vektorové funkce \(\vec{a}(t)\) a počátečního stavu umožňuje určit stav částice v libovolném okamžiku.

Příklad 1.10. Pohyb v tihovém poli Země — obrácená úloha.

Všechny objekty nacházející se v homogenním tihovém poli Země se pohybují s konstantním zrychlením \(\vec{g}\) o velikosti \(g \approx 9,81 \text{ m/s}^2\). Samozřejmě za předpokladu, že pohybu nejou kladeny žádné překážky a že zanedbáme i jeho brzdičí okolním vzduchem. (Velikost tihového zrychlení se v různých místech na zemském povrchu poněkud liší. Definiticky, tj. přesně, je zavedeno tzv. normální tihové zrychlení \(g = 9,80665 \text{ m/s}^2\).) Je tedy \(\vec{a}(t) = \vec{g}\). Pak podle (1.47) dostáváme

\[
r(t) = r(0) + \vec{v}(0)t + \frac{1}{2}\vec{g}t^2.
\]

Představu o konkrétním tvaru trajektorie získáme snadněji, jestliže zapřemůžeme skožky vektoru \(\vec{r}(t)\) ve vhodně zvolené souřadnicové soustavě, spjaté pro jednoduchost s fyzikálně či geometricky význačnými směry. Fyzikálně význačným směrem je nepohybové směr tihového zrychlení v daném místě na povrchu Země, světový směr. S ním spojíme osu \(z\), zatímco souřadnicovou rovinu \(yOz\) zvolíme tak, aby v ní ležel vektor počáteční rychlosti (tato volba není jednoznačná, pokud je \(\vec{v}(0) \parallel \vec{g}\)). Počátek soustavy souřadnic lze bez újmy na obecnosti interpretace výsledků volit tak, aby \(r(0) = 0\). Situaci ilustruje obr. 1.17.
Pak
\[x(t) = 0, \quad y(t) = v_0 t \cos \alpha, \quad z(t) = v_0 t \sin \alpha - \frac{1}{2} gt^2. \]

Uvedené vztahy představují pro \(\alpha \neq \frac{\pi}{2}, \frac{3\pi}{2} \) parametrické rovnice paraboly ležící v souřadnicové rovině \(yOz \) s vrcholem

\[V = \left[0, \frac{v_0^2}{g} \sin \alpha \cos \alpha, \frac{v_0^2}{g} \sin^2 \alpha \right], \]

pro \(\alpha = \frac{\pi}{2} \) resp. \(\alpha = \frac{3\pi}{2} \) je trajektorie přímková a polohem je tzv. vrch svíšlý vzhůru, resp. vrch svíšlý dolů. Pro \(\alpha = 0 \) a pro \(\alpha = \pi \) jede o vrch vodorovný, v ostatních případech o vrch šikmý. Pro \(\vec{v}_0 = \vec{0} \) hovoříme o volném pádu. Označme-li \(v_0 \) velikost počáteční rychlosti, pak

\[\alpha = 0, \pi : \quad \vec{r}(t) = \left(0, \pm v_0 t, -\frac{1}{2} gt^2 \right), \]

\[\alpha = \frac{\pi}{2}, \frac{3\pi}{2} : \quad \vec{r}(t) = \left(0, 0, \pm v_0 t - \frac{1}{2} gt^2 \right), \]

\[\vec{v}_0 = \vec{0} : \quad \vec{r}(t) = \left(0, 0, -\frac{1}{2} gt^2 \right). \]

\[\text{Příklad 1.11. Polohy po cykloidě — obrácená úloha.} \]
Hmotný bod se pohybuje se zrychlěním

\[\vec{a}(t) = (-a_0 \cos \omega t, -a_0 \sin \omega t, 0) , \]

kde \(\omega [s^{-1}] \) a \(a_0 [ms^{-2}] \) jsou kladné konstanty. V okamžiku \(t = 0 \) s je jeho rychlost \(\vec{v}(0) = \vec{v}_0 = (0, v_0, 0) [ms^{-1}] \), \(v_0 > 0 \) a poloha \(\vec{r}(0) = \vec{r}_0 = (R, 0, 0) [m] \), \(R > 0 \). Najdeme parametrické vyjádření trajektorie hmotného bodu, určíme, o jakou křivku se jedná a zjistíme, za jakých předpokladů se stane kružnicí. Využijeme vztahů (1.47):

\[\vec{r}(t) = \left(\int_0^t -a_0 \cos \omega \tau \, d\tau , v_0 + \int_0^t -a_0 \sin \omega \tau \, d\tau , 0 \right) = \]

\[= \left(-\frac{a_0}{\omega} \sin \omega t , \frac{a_0}{\omega} (\cos \omega t - 1) + v_0 , 0 \right) . \]

\[\vec{r}(t) = \left(R + \int_0^t -\frac{a_0}{\omega} \sin \omega \tau \, d\tau , \int_0^t \frac{a_0}{\omega} [(\cos \omega \tau - 1) + v_0] \, d\tau , 0 \right) = \]

\[= \left(R - \frac{a_0}{\omega^2} + \frac{a_0}{\omega^2} \cos \omega t , \left(v_0 - \frac{a_0}{\omega} \right) t + \frac{a_0}{\omega^2} \sin \omega t , 0 \right) . \]

Trajektorií hmotného bodu je tedy křivka ležící v souřadnicové rovině \(xOy \). Úpravou jejího parametrického vyjádření

\[x = R - \frac{a_0}{\omega^2} + \frac{a_0}{\omega^2} \cos \omega t , \quad y = \left(v_0 - \frac{a_0}{\omega} \right) t + \frac{a_0}{\omega^2} \sin \omega t \]

na tvar

\[\left[x - \left(R - \frac{a_0}{\omega^2} \right) \right]^2 + \left[y - \left(v_0 - \frac{a_0}{\omega} \right) t \right]^2 = \frac{a_0^2}{\omega^2} \]

získáme geometrickou představu o této křivce: Hmotný bod se v každém okamžiku nachází na kružnici o poloměru \(\frac{a_0}{\omega^2} \), jejíž střed však není pevný. Pohybuje se rovnoměrně rychlostí o velikosti \(v_0 - \frac{a_0}{\omega} \) po přímce o rovnici \(x = R - \frac{a_0}{\omega^2} \). Situaci znázorňuje následující obrázek, kde je trajektorie zakreslena pro hodnoty \(R = 3 \text{ cm} \), \(\omega = \frac{\pi}{7} \text{ s}^{-1} \), \(a_0 = \frac{\pi}{2} \text{ cm s}^{-2} \), \(v_0 = \frac{3}{2} \text{ cm s}^{-1} \), v časovém intervalu \(t \in [0, 3T] \), kde \(T = 4 \text{ s} \) je perioda řádké \(\sin \omega t \) a \(\cos \omega t \). Pro \(t \geq T \) se znázorněný základní motiv opakuje.
Křivkou je cykloida. Podle konkrétní hodnoty \(v_0 = \frac{a_0}{\omega} \) jde o cykloidu prostou, prodlouženou nebo zkrácenou. V případě cykloidy prosté je \(v_0 = \frac{2a_0}{\omega} \) a velikost rychlosti pohybu středu kružnice \(v_s = v_0 - \frac{a_0}{\omega} = \frac{a_0}{\omega} \) je shodná s obvodovou rychlostí bodu \(v_{obv} = \omega \frac{a_0}{\omega} = \frac{a_0}{\omega} \), jako by se kružnice valila po písmec \(p_1 \). V případě prodloužené cykloidy je \(v_{obv} > v_s \), jako by kružnice při valení podklizovala, pro zkrácenou cykloidu pak platí \(v_{obv} < v_s \). Křivka na obr. 1.18 je cykloidou prodlouženou. Trajektorie degeneruje v kružnici, je-li \(v_0 = \frac{a_0}{\omega} = 0 \). Hmotný bod se pak po ní pohybuje obvodovou rychlostí \(v_0 \), poloměr kružnice je \(r = \frac{a_0}{\omega} \), velikost dostředivého zrychlení je \(a_0 = \omega v_0 \), tj. \(a_0 = \omega^2 r, v_0 = \omega r \). V posledních vztazích poznáváme známé vzorce pro rovnoměrný pohyb po kružnici. V případě volby \(R = \frac{a_0}{\omega^2} \) jde o kružnici se středem v počátku soustavy souřadnic.

1.4 Popis pohybu různými pozorovateli — každý to vidí jinak

Konkrétní číselné údaje, jimiž jsou reprezentovány události v časoprostoru, jsou závislé na volbě vztahů soustavy. Vyvstává tak problém nalezne transformačních vztahů mezi dvěma souvěry údajů

\[
\begin{align*}
U &= (x_1, x_2, x_3, t), & U &= (x'_1, x'_2, x'_3, t'),
\end{align*}
\]

OBR. 1.18: Pohyb hmotného bodu po cykloidě
jimiž popisují jednu a tutéž událost \(U \) dva pozorovatele ve vztážných soustavách \(S \) a \(S' \). Transformačními vztahy rozumíme vyjádření kterékoliv z obou čtvrtic číselných údajů pomocí druhé, v závislosti na veličinách charakterizujících vzájemný pohyb vztážných soustav. sledujeme-li v soustavách \(S \) a \(S' \) posloupnost událostí v čase, například polohu částice, je důležité znát i převodní vztahy mezi rychlostmi a zrychleními.

Nerelativistický přístup k problematice transformačních vztahů vychází z představy, že vzájemně rychlost objektů není nijak omezena. Je proto dobře použitelný v případech, kdy jsou všechny pozorované rychlosti o několik řádů menší než rychlost světla ve vaku, která v přírodě představuje „rychlosti mez“.

1.4.1 Okamžité šíření interakce a absolutnost současnosti

Jedná o půl předpoklad nesmezené rychlém šíření vzájemného působení objektů, tzv. **okamžitěm šíření interakce**. Názorně jej lze vyloučit například pomocí představy dvou těles (popisovaných v téže vztážné soustavě spojené s kterykoli z nich, nebo s libovolným třetím tělesem), která na sebe působí na dálku prostřednictvím gravitační či elektromagnetické interakce. Informace o jakélivoli změně oddechávající se na jednom z těles dostává druhé z nich okamžitě, tj. bez časového zpoždění, a to bez ohledu na vzdálenost těles a charakter jejich vzájemného pohybu. Jestliže tedy dvě události \(U_1 \) a \(U_2 \) nastanou ve vztážné soustavě \(S \) spojené s prvým z obou těles současně, tj. \(t_1 = t_2 \), budou i pozorovateli v soustavě \(S' \) zaznamenány jako současné, tj. \(t'_1 = t'_2 \). Současnost událostí je proto v nesmezené mechanice absolutním pojmem. Měření času v různých vztážných soustavách se může lišit jedné rozdílnosti volby počátku časové če, kterou lze odstranit vhodným seřazením hodin. Získáváme tak důležitý transformační vztah pro popis událostí různými pozorovateli: Nechť \(U = (x, y, z, t)_S \) a \(U = (x', y', z', t')_{S'} \). Pak při vhodném seřazení hodin je

\[
 t = t'.
\]

Tento výsledek je matematickým způsobem skutečnosti, že čas plyne ve všech vztážných soustavách stejně. Lze mu přisoudit roli parametru, spočetného pokusu dějů ve všech vztážných soustavách. V dalších úvahách již budeme užívat při označení času (jako nezávislé proměnné, jejímž funkcemi jsou všechny kinematické veličiny) součetného symbolu \(t \) bez ohledu na volbu vztážné soustavy.

1.4.2 Přechod mezi soustavami souřadnic jako geometrický problém

Výhradně geometrickou či algebraickou úlohou je nalezení transformačních vztahů pro přechod mezi dvěma kartézskými soustavami souřadnic, které jsou vůči sobě natočeny tak, že jejich vzájemně orientace je nezázvislá na čase. Předpokládejme, že tyto soustavy mají společný počátek, tj. \(S = < O, e_1, e_2, e_3 >, S' = < O, e'_1, e'_2, e'_3 > \). Každý z vektorů \(e'_1, e'_2, e'_3 \) lze vyjádřit jako lineární kombinaci vektorů \(e_1, e_2, e_3 \) a neopak, každý z vektorů \(e_1, e_2, e_3 \) je lineárně závislý na vektorůch \(e'_1, e'_2, e'_3 \). Existují tedy souřady reálných čísel \(\{ t_{ij} \}_{i,j \in \{1,2,3\}} \)
1.4. POPIS POHYBU RŮZNÝMI POZOROVATELI — KAŽDÝ TO VIDÍ JINAK

a \(\{ \sigma_{ij} \}_{i,j \in \{1,2,3\}} \) tak, že platí

\[
e_i' = \sum_{j=1}^{3} \tau_{ij} e_j' , \quad e_i = \sum_{j=1}^{3} \sigma_{ij} e_j' , i \in \{1,2,3\} .
\]

\(T = (\tau_{ij})_{i,j \in \{1,2,3\}} \), resp. \(S = (\sigma_{ij})_{i,j \in \{1,2,3\}} \) jsou matice přechodu od báze \(< e_1, e_2, e_3 > \) k bázi \(< e_1', e_2', e_3' > \) v \(\mathbb{R}^3 \), resp. matice opačného přechodu. Pro toto báze \(< e_1, e_2, e_3 > \) i \(< e_1', e_2', e_3' > \), definující spojku s počátkem \(O \) dvě kartézské soustavy souřadnic, jsouortonormální, platí pro prvky matic \(T \) a \(S \) tzv. relace ortogonality, vyplývající ze vztahů

\[
e_i e_k = \delta_{ik} , \quad e_i'^* e_j'^* = \delta_{jk} .
\]

Symbol \(\delta_{ik} \) představuje \textit{Kroneckerovo delta}, nabývající hodnoty 1 pro i = k a hodnoty 0 pro i ≠ k. Prvky matic \(T \) a \(S \) mají názory geometrický význam: Platí \(e_i e_k = \sum_{j=1}^{3} \tau_{ij} e_j e_k = \sum_{j=1}^{3} \tau_{ij} \delta_{jk} = \tau_{ik} . \)

Současně vždy je

\[
e_i'^* e_j'^* = |e_i|^2 \quad \text{a} \quad e_i'^* e_j'^* = \cos \varphi_{ik} ,
\]

kde \(\varphi_{ik} = < e_i', e_k > \) je úhel mezi vektory \(e_i' \) a \(e_k . \) Pak \(\tau_{ik} = \cos \varphi_{ik} a \) analogicky \(\sigma_{ik} = \cos \varphi_{ik} \). Je vidět, že matice \(T \) a \(S \) jsou navzájem tranzponovány. (V obecném případě, kdy na báze \(< e_1, e_2, e_3 > \) a \(< e_1', e_2', e_3' > \) není kladen požadavek ortonormálnosti, jsou matice \(T \) a \(S \) navzájem inverzní.)

Uvádíme o hmotném bodu, jehož pohyb je sledován pozorovatelem v vztahových soustavách \(S \) a \(S' \). Jeho okamžitá poloha je určena polohovým vektorem \(\vec{r} = (t) \) o složkách \((x_1(t), x_2(t), x_3(t))_S \) a \((x'_1(t), x'_2(t), x'_3(t))_{S'} \) vzhledem k soustavě \(S \) a \(S' \). Je tedy

\[
\vec{r}(t) = \sum_{i=1}^{3} x_i(t) e_i' , \quad \vec{r}'(t) = \sum_{j=1}^{3} x'_j(t) e'_j .
\]

Úpravou například prvního z obou vyjádření vektoru \(\vec{r}(t) \) s využitím vztahů (1.51) dostáváme:

\[
\vec{r}(t) = \sum_{i=1}^{3} x_i(t) e_i' = \sum_{i=1}^{3} x_i(t) \sum_{j=1}^{3} \sigma_{ij} e'_j = \sum_{j=1}^{3} \left(\sum_{i=1}^{3} x_i(t) \sigma_{ij} \right) e_j .
\]

Odtud je zřejmé, že

\[
x'_j(t) = \sum_{i=1}^{3} x_i(t) \sigma_{ij} , \quad x_j(t) = \sum_{i=1}^{3} x'_i(t) \tau_{ij} .
\]

Při interpretaci trojic složek \((x) = (x_1(t) \quad x_2(t) \quad x_3(t))_S \) a \((x') = (x'_1(t) \quad x'_2(t) \quad x'_3(t))_{S'} \) jako řádkových matic můžeme užít maticevěho zpisu vztahů (1.53), tj.

\[
(x') = (x) S , \quad (x') = (x') T .
\]

Označme analogicky

\[
\vec{r}(t) = \sum_{i=1}^{3} v_i(t) e_i' = \sum_{i=1}^{3} v'_i(t) e'_j , \quad \vec{a}(t) = \sum_{i=1}^{3} a_i(t) e_i = \sum_{j=1}^{3} a'_j(t) e'_j .
\]

Rychlost a zrychlení, vyjádřené jako lineární kombinace vektorů \(e_1, e_2, e_3 \) resp. \(e'_1, e'_2, e'_3 \), jsou řádkové matice tvořené složkami vektorů rychlosti a zrychlení vzhledem k soustavám \(S \) a \(S' \). Pak vzhledem ke nezávislosti matice \(T \) a \(S \) na čase získáváme pro složky rychlosti a zrychlení transformační vztahy stejného tvaru jako pro polohový vektor,

\[
(v') = (v) S , \quad (v') = (v') T , \quad (a') = (a) S , \quad (a') = (a') T .
\]
42KAPITOLA 1. POJMY KLÁSICKÉ MECHANIKA — POHYB A JEHO POPIS

Vztahy tohoto typu platí pro složky štěbového vektoru vzhledem k soustavám S a S'. Na základě získaných výsledků lze konstatovat, že časově neproměnné natočení souřadnicových soustav je fyzikálně nepodstatné.

Přechod mezi kartézskými soustavami souřadnic $S = \langle O; e_1, e_2, e_3 \rangle$, $S' = \langle O'; e'_1, e'_2, e'_3 \rangle$ se společným počátkem a pravoúhlovými ortogonálními bázemi je zadán těmito údaji: $\varphi_{11} = \frac{\pi}{4}$, $\varphi_{12} = \frac{\pi}{6}$, $\varphi_{33} = \frac{\pi}{3}$. Najdeme matice přechodu T a konkrétní tvar transformačních vztahů (1.50). Především platí $\tau_{ij} = \cos \varphi_{ij}$, tj. $\tau_{11} = \frac{1}{2}$, $\tau_{12} = \frac{\sqrt{3}}{2}$, $\tau_{33} = \frac{\sqrt{3}}{2}$. V důsledku relaci ortogonality (1.52) je $\tau_{11}^2 + \tau_{12}^2 + \tau_{33}^2 = 1 \implies \tau_{13} = (1 - (\frac{1}{2})^2 - (\frac{\sqrt{3}}{2})^2)\frac{1}{2} = 0$, $\tau_{13}^2 + \tau_{32}^2 + \tau_{33}^2 = 1 \implies \tau_{23} = \pm \frac{\sqrt{2}}{2}$. Pak

$$T = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \end{pmatrix}.$$

Relace ortogonality umožní nalézt i zbývající prvky matice přechodu:

$$\frac{1}{2} \tau_{11}^2 + \frac{\sqrt{3}}{2} \tau_{12}^2 = 0, \tau_{21}^2 + \tau_{22}^2 + \frac{1}{2} = 1, \frac{1}{2} \tau_{31}^2 + \sqrt{3} \tau_{32} = 0, \tau_{33}^2 + \tau_{32}^2 + \frac{1}{2} = 1.$$

Řešení této soustavy rovnací a uzavřeným zbývajících relací ortogonality při rozhodování o známcích odmocnin dostáváme pro matrici T tyto možnosti:

$$\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \end{pmatrix}.$$

Z nich pouze první dvě vyhovují požadavku, aby i báze $\langle e'_1, e'_2, e'_3 \rangle$ byla pravoúhlová. Vypínavá to ze skutečnosti, že u těchto možností je $\det T = 1$, zatímco u zbývajících platí $\det T = -1$. Úloha má tedy dvě řešení. Věšneme si podobnějí prvého z nich:

$$T = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}, \ S = T^{transp} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}.$$
1.4. POPIŠ POHYBU RŮZNÝMI POZOROVATELI — KAŽDÝ TO VIDÍ JINAK

Odpovídající transformační vztahy mají tvar:

\[x'_1(t) = \frac{1}{2} x_1(t) + \frac{\sqrt{3}}{2} x_2(t), \quad x_1(t) = \frac{1}{2} x'_1(t) - \frac{\sqrt{3}}{2} x'_2(t) - \frac{\sqrt{3}}{2} x'_3(t), \]

\[x'_2(t) = -\frac{\sqrt{3}}{2} x_1(t) + \frac{1}{2} x_2(t) - \frac{\sqrt{3}}{2} x_3(t), \quad x_2(t) = \frac{\sqrt{3}}{2} x'_1(t) + \frac{1}{2} x'_2(t) + \frac{1}{2} x'_3(t), \]

\[x'_3(t) = -\frac{\sqrt{3}}{2} x_1(t) + \frac{1}{2} x_2(t) + \frac{\sqrt{3}}{2} x_3(t), \quad x_3(t) = -\frac{\sqrt{3}}{2} x'_1(t) + \frac{\sqrt{3}}{2} x'_2(t). \]

Transformační vztahy vyplývající z druhého řešení lze získať analogicky.

1.4.3 Polýb v různých vztažných soustavách — vektorová formulace

Nechť pohyb hmotného bodu sledují dva pozorovatelé ve vztažných soustavách \(S = < O; \vec{e}_1, \vec{e}_2, \vec{e}_3 >, S' = < O'; \vec{e}'_1, \vec{e}'_2, \vec{e}'_3 > \). Jakmile je pohyb soustavy \(S' \) vůči soustavě \(S \) obecný, vždy je složen z translace, tj. pohybu počátku \(O' \) vůči soustavě \(S \), charakterizované vektorem \(\vec{R}(t) = (X_1(t), X_2(t), X_3(t))_S \), a z rotace soustavy \(S' \) kolem bodu \(O' \), popsávané úhlovou rychlostí \(\vec{\omega}(t) = (\omega_1(t), \omega_2(t), \omega_3(t))_S \). Vektorové funkce \(\vec{R}(t) \) a \(\vec{\omega}(t) \), zadané jejich složkami vzhledem k soustavě \(S \), považujeme za známé.

\[\text{Obr. 1.19: Popis vzájemného pohybu vztažných soustav} \]

Z Obr. 1.19 plyne vztah mezi polohovými vektory \(\vec{R}(t) \) a \(\vec{r}'(t) \):

\[\vec{r}(t) = \vec{r}'(t) + \vec{R}(t). \]

(1.56)
44KAPITOLA 1. POJMYKLÁSICKÉ MECHANIKA — POHYB A JEHO POPIS

Abychom nalezli vztah mezi rychlostmi hmotného bodu \(\vec{v}(t) = (d\vec{r}(t)/dt)_S \) a \(\vec{v}'(t) = (d\vec{r}'(t)/dt)_{S'} \), předpokládejme nejprve, že pohyb soustavy \(S' \) vzhledem k \(S \) je čistě rotační, tj. \(\vec{R}(t) = \text{konst.} \), a zjednodušme situaci ještě požadavkem \(\vec{R}(t) = \vec{0} \). Uvažujeme o částici, která je vzhledem k soustavě \(S' \) ve vzdálení \(\vec{r}(t) \) v klidu, tj. \(\vec{v}'(t) = \vec{0} \). Vzhledem k pozorovateli v soustavě \(S \) tedy vektor \(\vec{r}'(t) \) rotuje spolu se soustavou \(S' \) kolem bodu \(O \equiv O' \), odkud vektor rychlostí \(\vec{\omega}(t) \). Částice, sledovaná v soustavě \(S \), se tedy v každém okamžiku nachází na oskulační kružnici se středem na souřadnicové cíle \(x'_S \) a rovina oskulační kružnice je k této cíle kolmá (viz Obr. 1.20).

\[
\begin{align*}
\frac{\vec{r}'}{\Delta t} & \equiv \frac{\Delta \vec{s}}{\Delta t} = r' \sin \alpha & \Delta \phi \equiv \frac{\Delta \phi}{\Delta t} = \\
& \equiv \omega r' \sin \alpha \equiv |\vec{\omega} \times \vec{r}| \\
\end{align*}
\]

Obr. 1.20: K odvození transformačního vztahu mezi rychlostmi

Rychlost polohy částice v soustavě \(S \), \((d\vec{r}(t)/dt)_S \), je pak podle (1.38) dána vztahem

\[
\vec{v}(t) = \left(\frac{d\vec{r}(t)}{dt} \right)_S = \vec{\omega}(t) \times \vec{r}(t). \quad (1.57)
\]

Pokud bude rychlost částice \(\vec{v}'(t) = (d\vec{r}'(t)/dt)_{S'} \) vzhledem k soustavě \(S' \) obecně nemuková, pak

\[
\left(\frac{d\vec{r}'(t)}{dt} \right)_S = \left(\frac{d\vec{r}'(t)}{dt} \right)_{S'} + \vec{\omega}(t) \times \vec{r}'(t), \text{ tj.} \quad (1.58)
\]

\[
\vec{v}(t) = \vec{v}'(t) + \vec{\omega}(t) \times \vec{r}'(t). \quad (1.59)
\]

POZNÁMKA: Rychlost (1.59) není jen transformačním vztahem mezi rychlostmi částice \(\vec{v}(t) \) a \(\vec{v}'(t) \), měřenými v navzájem rotujících vztažných soustavách \(S \).
1.4. POPIS POHYBU RŮZNÝMI POZOROVATELI — KAŽDÝ TO VIDÍ JINAK

a S′. Uvádí do souvislosti časové derivace libovolného vektoru \(\vec{L}(t) \) umístěného ve společném počátku \(O \equiv O' \) obou soustav, vztážené ke každé z nich:

\[
\left(\frac{d\vec{L}(t)}{dt} \right)_S = \left(\frac{d\vec{L}(t)}{dt} \right)_{S'} + \vec{\omega}(t) \times \vec{L}(t). \tag{1.60}
\]

Vezneme-li v úvahu i translační pohyb soustavy \(S' \) vzhledem k \(S \), popsaný vektorovou funkcí \(\vec{R}(t) \), a označíme-li \(\vec{V}(t) = \left(\frac{d\vec{R}(t)}{dt} \right)_S \) dostáváme nejobecnější případ transformačního vztahu mezi rychlostmi \(\vec{v}(t) \) a \(\vec{v}'(t) \) líněného bodu vzhledem k soustavám \(S \) a \(S' \):

\[
\vec{v}(t) = \vec{v}'(t) + \vec{V}(t) + \vec{\omega}(t) \times \vec{r}''(t). \tag{1.61}
\]

Výraz, o který se liší rychlost částice v obou soustavách,

\[
\vec{v}_u(t) = \vec{V}(t) + \vec{\omega}(t) \times \vec{r}'(t), \tag{1.62}
\]

souvisí se vzájemným pohybem soustav a nazývá se unášivá rychlost. Je součtem unášivých rychlostí transformačního a rotačního pohybu, \(\vec{V}(t) \) a \(\vec{\omega}(t) \times \vec{r}'(t) \).

Užitím obecného vztahu (1.60) odvodíme nyní transformační vztah pro zrychlení:

\[
\vec{a}(t) = \left(\frac{d\vec{v}(t)}{dt} \right)_S = \left(\frac{d\vec{v}'(t)}{dt} \right)_S + \vec{V}(t) + \vec{\omega}(t) \times \vec{r}'(t) = \vec{A} + \left(\frac{d\vec{v}'(t)}{dt} \right)_S + \vec{\omega} \times \vec{v}' + \vec{\omega} \times \vec{r} + \vec{\omega} \times \left(\frac{d\vec{r}}{dt} \right)_S = \vec{A} + \vec{\omega} \times \vec{v}' + \vec{\omega} \times \vec{r} + \vec{\omega} \times \left(\frac{d\vec{r}}{dt} \right)_S = \vec{A} + 2\vec{\omega} \times \vec{v} + \vec{\omega} \times \vec{r} \tag{1.63}
\]

Při úpravě jsme označili \(\vec{A}(t) = \left(\frac{d\vec{V}(t)}{dt} \right)_S \), zrychlení transformačního pohybu soustavy \(S' \) vzhledem k \(S \) a \(\vec{\omega}(t) = \left(\frac{d\vec{\omega}(t)}{dt} \right)_S \) úhlové zrychlení rotačního pohybu. Uvědomíme-li si, že \(\vec{a}(t) = \vec{a}'(t) + \vec{a}_u(t) \), je zrychlení sledované částice vzhledem k soustavě \(S' \), dostávame:

\[
\vec{a}(t) = \vec{a}'(t) + \vec{a}_u(t), \tag{1.63}
\]

\[
\vec{a}_u = \vec{A}(t) + 2\vec{\omega}(t) \times \vec{v}'(t) + \vec{\omega}(t) \times (\vec{\omega}(t) \times \vec{r}'(t)) + \vec{\varepsilon}(t) \times \vec{r}'(t). \tag{1.64}
\]
46KAPITOLA 1. POJMYKLASICKÉ MECHANIKA — P OHYB A JEHO POPIS

Unášivé zrychlení \(\mathbf{a}_u(t) \) je součtem zrychlení \(\mathbf{\ddot{A}}(t) \) translačního pohybu soustavy \(S' \) a zrychlení pohybu rotací, složeného z příspěvků

\[
\mathbf{a}_C = 2\mathbf{\omega}(t) \times \mathbf{\varepsilon}(t), \quad \mathbf{\ddot{a}}_{OD} = \mathbf{\ddot{\omega}}(t) \times (\mathbf{\omega} \times \mathbf{\varepsilon}(t)) \quad \text{a} \quad \mathbf{\ddot{a}}_E = \mathbf{\varepsilon}(t) \times \mathbf{\varepsilon}'(t)
\]

(1.65)

se nazývají Coriolisovo, odstředivé a Eulerovo zrychlení.

Příklad 1.13. Vzájemný pohyb vztážných soustav — částice na točně.

Předpokládejme, že soustava \(S' \) rotuje vzhledem k soustavě \(S \) stáleho úhlovou rychlostí \(\mathbf{\omega} \) kolem souřadnicové osy \(x_3 \). Počátky obou soustav a souřadnicové osy \(x_3 \) a \(x_3' \) trvale splývají, dvojice os \(x_1 \), \(x_1' \) a \(x_2 \), \(x_2' \) splývají v počátečním okamžiku \(t = 0 \). Hmotný bod se pohybuje podél osy \(x_1' \) stále rychlosti \(\mathbf{\varepsilon}' \) vzhledem k soustavě \(S' \), přičemž v okamžiku \(t = 0 \) prochází společným počátkem vztážných soustav.

Obr. 1.21: K příkladu 1.13

Položkový vektor, rychlost a zrychlení hmotného bodu jsou ve vztážné soustavě \(S' \) vyjádřeny takto:

\[
\mathbf{\tau}'(t) = (v't, 0, 0)_{S'}, \quad \mathbf{\varepsilon}'(t) = (v', 0, 0)_{S'}, \quad \mathbf{\ddot{a}}'(t) = (0, 0, 0)_{S'}.
\]

Složky vektoru úhlové rychlosti jsou

\[
\mathbf{\omega} = (0, 0, \omega)_{S} = (0, 0, \omega)_{S'}.
\]
1.4. POPIS POHYBU RŮZNÝMI POZOROVATELI — KAŽDÝ TO VIDÍ JINAK

Složky vektorů rychlosti \(\vec{v}'(t) \) a zrychlení \(\vec{a}'(t) \), charakterizujících pohyb částice v soustavě \(S' \), vztažené k soustavě \(S \) jsou

\[
\vec{v}'(t) = (v' \cos \omega t, v' \sin \omega t, 0)_S, \quad \vec{a}'(t) = (0, 0, 0)_S.
\]

Poloha částice vzhledem k soustavě \(S \) je určena vektorem

\[
\vec{r}(t) = \vec{r}' = (v' \cos \omega t, v' \sin \omega t, 0)_S.
\]

Zatímco trajektorií částice v soustavě \(S' \) je přímka, v soustavě \(S \) je jí Archimédova spirála. Polohu částice v některých okamžicích intervalu \([0, T]\) pro \(T = 4, 0\) s, \(v' = 2, 0\) m/s, \(\omega = 2\pi T \), v obou soustavách uvádí následující tabulka.

Tabulka 1.5: Pohyb částice v navzájem rotujících vztažných soustavách

<table>
<thead>
<tr>
<th>(t)</th>
<th>0.0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega t)</td>
<td>0.0</td>
<td>(\pi)</td>
<td>(\pi)</td>
<td>(\frac{2\pi}{3})</td>
<td>(\pi)</td>
<td>(\frac{5\pi}{3})</td>
<td>(\frac{7\pi}{4})</td>
<td>2(\pi)</td>
<td></td>
</tr>
<tr>
<td>(x')</td>
<td>0.0</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
</tr>
<tr>
<td>(y')</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>(x)</td>
<td>0.0</td>
<td>(\frac{\sqrt{2}}{2})</td>
<td>0.0</td>
<td>(-\frac{\sqrt{2}}{2})</td>
<td>(-4.0)</td>
<td>(-\frac{5\sqrt{2}}{2})</td>
<td>0.0</td>
<td>(\frac{7\sqrt{2}}{4})</td>
<td>8.0</td>
</tr>
<tr>
<td>(y)</td>
<td>0.0</td>
<td>(\frac{\sqrt{2}}{2})</td>
<td>2.0</td>
<td>(\frac{\sqrt{2}}{2})</td>
<td>0.0</td>
<td>(-\frac{5\sqrt{2}}{2})</td>
<td>(-6.0)</td>
<td>(-\frac{7\sqrt{2}}{2})</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Trajektorie částice v soustavě \(S \) je znázorněna na obr. 1.22. (Osa \(x \) je vodorovná a směřuje doprava, osa \(y \) je svislá a směřuje vzhůru.)
Obr. 1.22: Pohyb částice v navzájem rotujících vztažných soustavách

Vyjádříme rychlost a zrychlení částice vzhledem k pozorovateli v soustavě \mathcal{S} užitím transformačních vztahů (1.59), (1.63) a (1.64). Při výpočtu musíme samozřejmě pracovat u všech vektorů s jejich skořeněnými vztaženími k jedné a těže soustavě souřadnic, a to soustavě \mathcal{S}, vzhledem k níž rychlost $\vec{v}(t)$ a zrychlení $\vec{a}(t)$ částice měříme.

\[
\vec{v}(t) = \vec{v}'(t) + \vec{a}'(t)(v' \cos \omega t, v' \sin \omega t, 0)_S + (0, 0, \omega)_S \times (v' \cos \omega t, v' \sin \omega t, 0)_S,
\]

\[
\vec{a}(t) = \vec{a}'(t) + 2\vec{\omega} \times \vec{v}'(t) + \vec{\omega} \times (\vec{\omega} \times \vec{v}'(t)) =
\]

\[
= 2(0, 0, \omega)_S \times (v' \cos \omega t, v' \sin \omega t, 0)_S + (0, 0, \omega)_S \times ((0, 0, \omega)_S \times
\]

\[
\times (v' \cos \omega t, v' \sin \omega t, 0)_S = (-2v' \sin \omega t, 2v' \cos \omega t, 0)_S +
\]

\[
+ (0, 0, \omega)_S \times (-\omega v' \sin \omega t, \omega v' \cos \omega t, 0)_S =
\]

\[
= (-2v' \sin \omega t - \omega^2 v' \cos \omega t, 2v' \cos \omega t - \omega^2 v' \sin \omega t, 0)_S.
\]

Derivováním vektorové funkce $\vec{r}(t) = (v' \cos \omega t, v' \sin \omega t, 0)_S$ podle času získáme pro $\vec{v}(t)$ a $\vec{a}(t)$ stejné výsledky jako užitím transformačních vztahů. ♠
1.4. POPIS POHYBU RŮZNÝMI POZOROVATELI — KAŽDÝ TO VIDÍ JINAK

1.4.4 Pohyb v různých vztahových soustavách — maticeová formulace

Transformační vztahy ve vektorovém tvaru pro pohyb, rychlost a zrychlení částice vzhledem k různým vztahovým soustavám jsou velmi názorné. Pro praktické použití při přepočtech činěných údajů zadávaných v různých vztahových soustavách je však třeba je vyjádřit ve složkách.

K tomu je velmi vhodné použít maticeové formulace.

Uvažme znovu vztahové soustavy \(S = \langle O; e_1, e_2, e_3 \rangle \), \(S' = \langle O'; e'_1, e'_2, e'_3 \rangle \). Transformační pohyb soustavy \(S' \) vzhledem k \(S \) je opět popsán vektorom \(\dot{R}(t) \), jehož vyjádření pomocí složek vzhledem k soustavě \(S \) budeme interpretovat jako řádkovou matici

\[(X) = (X_1(t) \ X_2(t) \ X_3(t))_S \]

Pohyb rotační budeme námíto úhlovou rychlosti \(\dot{\omega}(t) \) charakterizovat pomocí matice přechodu \(T(t) \) od báze \(\langle e_1, e_2, e_3 \rangle \) k bázi \(\langle e'_1, e'_2, e'_3 \rangle \). Pomnoží vektoru \(e'_1, e'_2, e'_3 \) rotující vůči soustavě \(S \) úhlovou rychlosti \(\dot{\omega}(t) \), jsou vzhledem k ní závislé na čase. Tedy \(T \) a převodovou matici \(T \) a \(S \) jsou funkcionál času.

Odvodíme nejprve souvislost mezi vektorom \(\dot{\omega}(t) \) a maticí přechodu \(T(t) \). Podle vztahu (1.66) platí

\[\left(\frac{d\omega'_i}{dt} \right)_S = \dot{\omega}(t) \times e'_i(t) \], \(i \in \{1, 2, 3\} \),

nebo \(\left(\frac{d\omega'_i}{dt} \right)_S = 0 \). Podle (1.51) návazní časové závislosti prvků matice \(T \) platí

\[\dot{e}'_i(t) = \sum_{j=1}^{3} \tau_{ij}(t)e'_j(t), \quad i \in \{1, 2, 3\} \].

Z tohoto vztahu \(\dot{e}'_i(T) \) dostáváme postupně již bez vypisování proměnné \(t \):

\[\dot{r}_{11} = \omega_2 \tau_{13} - \omega_3 \tau_{12}, \quad \dot{r}_{12} = \omega_3 \tau_{11} - \omega_1 \tau_{13}, \quad \dot{r}_{13} = \omega_1 \tau_{12} - \omega_2 \tau_{11} \]

Tyto vztahy lze zapíat pomocí maticeového násobení:

\[\begin{pmatrix} \dot{r}_{11} & \dot{r}_{12} & \dot{r}_{13} \\ \dot{r}_{21} & \dot{r}_{22} & \dot{r}_{23} \\ \dot{r}_{31} & \dot{r}_{32} & \dot{r}_{33} \end{pmatrix} = \begin{pmatrix} \tau_{11} & \tau_{12} & \tau_{13} \\ \tau_{21} & \tau_{22} & \tau_{23} \\ \tau_{31} & \tau_{32} & \tau_{33} \end{pmatrix} \begin{pmatrix} 0 & \omega_3 & -\omega_2 \\ -\omega_3 & 0 & \omega_1 \\ \omega_2 & -\omega_1 & 0 \end{pmatrix} \]

odkud po označení

\[\Omega(t) = \begin{pmatrix} 0 & \omega_3(t) & -\omega_2(t) \\ -\omega_3(t) & 0 & \omega_1(t) \\ \omega_2(t) & -\omega_1(t) & 0 \end{pmatrix} \]

dostáváme

\[\dot{T}(t) = T(t) \Omega(t) \]

V případě, že je známa matice přechodu \(T(t) \), která je nutně regulární, lze ze vztahu (1.68) určit matrici \(\Omega(t) \) a vektorovou funkci \(\dot{\omega}(t) \):

\[\Omega(t) = T^{-1}(t) \dot{T}(t) \]

Je-li naopak známa úhlová rychlost \(\dot{\omega}(t) \), je nutno chápát vztah (1.68) jako tři soustavy diferenciálních rovnic prvního řádu pro tři neznámé prvků matice \(T(t) \), tj.

\[\tau_{11}(t), \quad \tau_{22}(t), \quad \tau_{33}(t), \quad i \in \{1, 2, 3\} \].
50 KAPITOLA 1. POJMY KLÁSICKÉ MECHANIKY — POHYB A JEHO POPIS

Uvažujme o situaci popsané v příkladu 1.13, kde \(\mathbf{\omega} = (0, 0, \omega)_S \). Pak

\[
\Omega(t) = \begin{pmatrix}
0 & \omega & 0 \\
-\omega & 0 & 0 \\
0 & 0 & 0
\end{pmatrix},
\]

odkud \(\tau_1 = -\omega \tau_2, \tau_2 = \omega \tau_1, \tau_3 = 0, i \in \{1, 2, 3\} \).

Obecné řešení této soustavy diferenciálních rovnic má tvar (ověřte zpětným dosazením):

\[
\tau_1 = a_1 \cos \omega t - b_1 \sin \omega t, \quad \tau_2 = a_1 \cos \omega t + a_1 \sin \omega t, \quad \tau_3 = c_i, \quad i \in \{1, 2, 3\},
\]

kde \(a_1, b_1, c_i, i \in \{1, 2, 3\} \), jsou libovolné reálné konstanty. Soustavě tedy vyhovuje každá matic \(T(t) \) tvaru

\[
T(t) = \begin{pmatrix}
a_1 \cos \omega t - b_1 \sin \omega t & b_1 \cos \omega t + a_1 \sin \omega t & c_1 \\
-a_2 \cos \omega t - b_2 \sin \omega t & b_2 \cos \omega t + a_2 \sin \omega t & c_2 \\
a_3 \cos \omega t - b_3 \sin \omega t & b_3 \cos \omega t + a_3 \sin \omega t & c_3
\end{pmatrix}.
\]

Počáteční podmínka, vyplývající se zadání příkladu 1.13 určuje prvky matice \(T(t) \) v okamžiku \(t = 0 \): \(T(0) = E \) (jednotková matice). Souřadnicové osy soustav \(S = \langle O; e_1', e_2', e_3' \rangle, S' = \langle O'; e_1, e_2, e_3 \rangle \) totiž v okamžiku \(t = 0 \) splynou. Této počáteční podmínce odpovídá následující tvar matice \(T(t) \) (paritální řešení soustavy rovnic (1.68)):

\[
T(t) = \begin{pmatrix}
\cos \omega t & \sin \omega t & 0 \\
-\sin \omega t & \cos \omega t & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

Ověřte, že toto řešení souladí s výsledky příkladu 1.13, získanými na základě geometrické představy.

Na základě vztahu (1.53), v nichž vezmeme v úvahu časovou závislost matic přechodu a zormalizováme je i na případ translacího položky soustavy \(S' \) vzhledem k \(S_a \), můžeme s využitím (1.68) získat transformační vzorce pro složky rychlosti a zrychlení hmotného bodu v maticovém vyjádření:

\[
(x) = (x')T + (X) \implies (\dot{x}) = (\dot{x'})T + (\dot{X}) = (\dot{x'})T + (x')T\Omega + (\dot{X}),
\]

odkud

\[
(\dot{x}) = (\dot{x'})T + (\dot{x'})T\Omega + (\dot{X}) = (\dot{x'})T + 2(\dot{x'})T\Omega + (x')T\Omega + (\dot{X}) = (\dot{x'})T + 2(\dot{x'})T\Omega + (x')T\Omega + (\dot{X}),
\]

\[
(\ddot{x}) = (\ddot{x'})T + 2(\ddot{x'})T\Omega + (x')T\Omega^2 + (x')T\Omega + (\ddot{X}) = (\ddot{x'})T + 2(\ddot{x'})T\Omega + (x')T\Omega^2 + (x')T\Omega + (\ddot{X}) + (A).
\]

Unášvá rychlost a zrychlení mají tedy v maticovém vyjádření vzhledem k soustavě \(S \) tvar

\[
(v_x) = (x')T\Omega + (V), \quad (a_x) = 2(v_x)T\Omega + (x')T\Omega^2 + (x')T\Omega + (A).
\]

Příklad 1.15. Příklad 1.13 ještě jinak.
1.4. POPISPOHYBU RŮZNÝMI POZOROVATELI — KAŽDÝ TO VIDÍ JINAK

Rychlost a zrychlení částice z příkladu 1.13 vzhledem k soustavě S vytvoříme v maticeformalismu. Využijeme matice $T(t)$ a Ω z předchozího příkladu 1.14. Podle vztału (1.69) je rychlost \boldsymbol{v} v soustavě S reprezentována řádkovou maticí (\boldsymbol{v}):

$$
\begin{pmatrix}
\cos \omega t & \sin \omega t & 0 \\
-\sin \omega t & \cos \omega t & 0 \\
0 & 0 & 1
\end{pmatrix} + (v' 0 0) \begin{pmatrix}
\cos \omega t & \sin \omega t & 0 \\
-\sin \omega t & \cos \omega t & 0 \\
0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
0 & \omega & 0 \\
-\omega & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}.
$$

$$
(v) = (v' \cos \omega t - \omega v' \sin \omega t \quad v' \sin \omega t + \omega v' \cos \omega t \quad 0)_S.
$$

Tento výsledek je v souhlasu s vyjádřením rychlostí $\dot{\mathbf{v}}(t)$ hmotného bodu vzhledem k vztážnou soustavě S získaným v příkladu 1.13. Pro vypočet zrychlení potřebujeme matice Ω^2 a $\dot{\Omega}$. Dostaneme pro ně

$$
\Omega^2 = \begin{pmatrix}
-\omega^2 & 0 & 0 \\
0 & -\omega^2 & 0 \\
0 & 0 & 0
\end{pmatrix}, \quad \dot{\Omega} = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}.
$$

Pro zrychlení platí

$$
(a) = 2(v' 0 0) \begin{pmatrix}
\cos \omega t & \sin \omega t & 0 \\
-\sin \omega t & \cos \omega t & 0 \\
0 & 0 & 1
\end{pmatrix} + (v' 0 0) \begin{pmatrix}
\cos \omega t & \sin \omega t & 0 \\
-\sin \omega t & \cos \omega t & 0 \\
0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}.
$$

$$
(a) = (-2v' \omega \sin \omega t - \omega^2 \omega t \cos \omega t \quad 2\omega v' \cos \omega t - \omega^2 \omega t \sin \omega t \quad 0)_S.
$$

Výsledek opět souhlasí se závěrem příkladu 1.13.

Odvodíme parametrické vyjádření trajektorie částice z příkladu 1.13 ve vztážnou soustavu S přímo, na základě rovnic (1.71): Je zadaná řešení v příkladu 1.13 vyplývají tyto řešení: $\bar{R}(t) = \bar{0} \quad \Rightarrow \quad \bar{V}(t) = \bar{0}, \bar{A}(t) = \bar{0}; \quad \bar{\omega}(t) = (0, 0, \omega) = \text{konst.} \quad \Rightarrow \quad \Omega = 0$ (nuková matice); $\bar{a'} = \bar{0}$. Vztah (1.71) má pro tento případ tvar:

$$
(a) = 2(v)\Omega - (x)\Omega^2 \quad \Rightarrow
$$
KAPITOLA 1. POJMY KLASICKE MECHANIKY — POHYB A JEHO POPIS

\[\begin{pmatrix} \dot{x} & \dot{y} & \dot{z} \end{pmatrix} = 2\begin{pmatrix} \ddot{x} & \ddot{y} & \ddot{z} \end{pmatrix} = \begin{pmatrix} 0 & \omega & 0 \\ -\omega & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} -\omega^2 & 0 & 0 \\ 0 & -\omega^2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \].

Získáváme soustavu rovnic

\[\ddot{x} + 2\omega\dot{y} - \omega^2 x = 0, \quad \dddot{y} - 2\omega\dot{x} - \omega^2 y = 0, \quad \dddot{z} = 0. \]

Po doplnění této soustavy početězními podmínkami \(x(0) = 0, \quad \dot{x}(0) = v', \quad y(0) = 0, \quad \dot{y}(0) = 0, \quad z(0) = 0, \quad \dot{z}(0) = 0 \) podle zadání příkladu 1.13 dostáváme její řešení:

\[\mathbf{r}(t) = (v't \cos \omega t, v't \sin \omega t, 0) \] .

Při praktických výpočtech, zejména při řešení úkolů z mechaniky v neinerciálních vztazných soustavách, je třeba výjádřit explicitně složky zrychlení \(\ddot{a} \) vzhledem k soustavě \(S' \). Řádkovou matricí \((a')\) můžeme získat vynásobením vztahu (1.70) matice \(S \) zprava:

\[(a') = (a)S - (A)S - (v')T\Omega S - (x')T\Omega^2 S - (x')T\Omega S. \quad (1.72) \]

Tento výsledek lze ještě jenomzdat užitím vztahů pro matice \(T, S, \Omega \): Označme jako \(\Omega' \) matici utvořenou ze složek úhlové rychlosti

\[\mathbf{w} \]

vzhledem k soustavě \(S' \) stejným způsobem, jakým byla definována matice \(\Omega \), tj. pro \(\mathbf{w} = (\omega_1', \omega_2', \omega_3')_{S'} \) je:

\[\Omega' = \begin{pmatrix} 0 & -\omega_2' & \omega_1' \\ \omega_2' & 0 & -\omega_1' \\ -\omega_1' & \omega_2' & 0 \end{pmatrix}. \]

Ze vztahu

\[\ddot{e}_S(t) = -\mathbf{w} \times e_S(t) \] (soustava \(S \) rotuje vůči soustavě \(S' \) úhelovou rychlostí

\[-\mathbf{w} \]) snadno odvodíme analogii vztahu (1.68):

\[\dot{S}(t) = -S(t)\Omega'(t). \quad (1.73) \]

Odtud transponováním \(\dot{T} = S_{\text{transp}} = -(\Omega')_{\text{transp}} \) \(S_{\text{transp}} = \Omega' T \), neboť matice \(\Omega' \), stejně jako \(\Omega \), je antisymetrická. Užitím vztahů (1.68) a (1.73) nakonec dostáváme:

\[T\Omega S = \Omega T S = \Omega' S = T\Omega^2 S = \Omega' T\Omega S = \Omega' \Omega = \Omega^2, \]

\[\Omega' = \frac{d}{dt}(T\Omega S) = T\dot{\Omega} S + T\Omega \dot{S} + T\Omega S = T\Omega + \Omega^2 - T\Omega S \Omega' \implies T\Omega = \Omega'. \]

Dosažením za \(T\Omega S, T\Omega^2 S a T\Omega S \dot{S} \) do vztahu (1.72) pro \((a')\) pak dostaneme:

\[(a') = ((a) - (A)S - 2(v')\Omega' - (x')T\Omega^2 + \Omega'). \quad (1.74) \]

POZNÁMKA: Tento výsledek můžeme získat také tak, že ve vztahu (1.70) formálně zaměníme

\[(a) \rightarrow (a'), \quad (a')T \rightarrow (a)S, \quad (A) \rightarrow -S' , \quad \Omega \rightarrow -\Omega', \quad (v) \rightarrow (v'), \quad (x) \rightarrow -Sx \rightarrow (x'). \]

1.4.5 Aplikace: Translační pohyb vztazných soustav, Galileova transformace

Omezení vztaznýchho pohybu vztazných soustav na pohyb čistě translační představuje velice jednoduchou, avšak z hlediska dalších útvah v oblasti newtonovské mechaniky významnou, situaci, jejíž studium přivedlo již v přednewtonovském
1.4. POPIS POHÝBU RŮZNÝMI POZOROVATELI — KAŽDÝ TO VIDÍ JINAK

období Galilea Galileího k pochopení klíčové úlohy pojmu zrychlení v mechanice a k vyslovení myšlenky invariance zákonů mechaniky vůči určitým typům přechodů mezi vztažnými soustavami. Transformační vztahy pro polohový vektor, rychlost a zrychlení hmotného bodu, odpovídající této situaci, získáme okamžitě z obecných vztahů (1.56), (1.61), (1.63) a (1.64), položíme-li v (1.61) a (1.64) \(\vec{a} = \vec{0} \):

\[
\vec{r}(t) = \vec{r}'(t) + \vec{R}(t) , \quad \vec{v}(t) = \vec{v}'(t) + \vec{V}(t) , \quad \vec{a}(t) = \vec{a}'(t) + \vec{A}(t) . \tag{1.75}
\]

Pro \(\vec{a}(t) = \vec{0} \) je vzájemně natočení souřadnicových soustav spjatých s \(S \) a \(S' \) časově neproměnné a tedy fyzikálně nepodstatné. Bez ztráty obecnosti uvahujeme proto předpokládat, že dvojice souřadnicových os \(x_i, x'_i \) jsou trvale rovnoběžné. Pak z (1.75) plynu následující transformační vztahy pro složky vektorů:

\[
x_i = x'_i + x_i , \quad v_i = v'_i + V_i , \quad a_i = a'_i + A_i , \quad i \in \{1,2,3\} .
\]

Velmi významným speciálním případem translačního pohybu soustavy \(S' \) vzhledem k \(S \) je pohyb rovnoměrně přímočarý. Při něm je \(\vec{R}(t) = \vec{R}_0 + \vec{V}t , \) kde \(\vec{R}_0 \) a \(\vec{V} \) jsou konstantní vektory. Pak je \(\vec{V}(t) = \vec{V} , \vec{A}(t) = \vec{0} \) a vztahy (2.78) nabudou tvaru

\[
\vec{r}(t) = \vec{r}' + \vec{R}_0 + \vec{V}t , \quad \vec{v}(t) = \vec{v}'(t) + \vec{V} , \quad \vec{a}(t) = \vec{a}'(t) . \tag{1.76}
\]

Důležitým poznatek, patrným z těchto vztahů, je skutečnost, že zrychlení částice, jejíž pohyb je posuzován dvěma pozorovateli pohybujícími se navzájem rovnoměrně přímočárně, je vzhledem k oběma stejně. Při zápisu transformačních vztahů (1.76) ve složkách bývá obvykle užití dalšího fyzikálně nepodstatného zjednodušení, jímž je splnění souřadnicových soustav \(<O;e_1,e_2,e_3>\) a \(<O';e'_1,e'_2,e'_3>\) v počátečním okamžiku \(t = 0 \) a volba společného směru souřadnicových os \(x_1, x'_1 \) podél fyzikálně významného směru, který je určen rychlostí \(\vec{V} \).
54 KAPITOLA 1. POJMY KLASICKÉ MECHANIKY — POHYB A JEHO POPIS

OBR. 1.23: K ilustraci Galileiovy transformace

Pak je $\vec{V} = (V, 0, 0)_S$ a vztahy (1.76) pro polohové vektory, dophněné transformační rovnici $t = t'$ pro časovou proměnnou, vedou k nejznámějšímu tvaru tzv. Galileiovy transformace:

$$t = t' \ , \ x_1 = x_1' + Vt' \ , \ x_2 = x_2' \ , \ x_3 = x_3' . \quad (1.77)$$

Přesnější vztahy pro rychlosti pak dávají tzv. klasické pravidlo pro skládání rychlostí:

$$v_1 = v_1' + V \ , \ v_2 = v_2' \ , \ v_3 = v_3' . \quad (1.78)$$

1.4.6 Aplikace: Pohyb částice v laboratorní vztažné soustavě

V předchozích odstavcích jsme zavedli laboratorní vztažnou soustavu pevně spojenou s povrchem Země. Tato soustava je neinerciální. Vzhledem k inerciální Galileiové soustavě, jejíž počátek je umístěn ve středu hmotnosti zemského soustavy a osy namířeny ke stále většímu, se spolu se Zemí pohybuje jednak po přibližně eliptické trajektorii kolem Slunce, jednak rotuje kolem zemské ose. Za dobu $T = 24h 56min$, která představuje periodu této rotace, uraz Země jen velmi malý úsek své dráhy kolem Slunce, podél něž se její rychlost mění pouze zanedbatelně. (Veřejnosti rychlosti v příslušném odstavci se liší asi o 3 procenta, změna směru rychlosti za dobu T činí asi 1%.) Rotace Země kolem její osy je tedy zcela rozhodující přičinou neinerciálnost laboratorní vztažné soustavy.

Zvážte inerciální vztažnou soustavu S podle Osn. 1.24 a jako S' označme laboratorní soustavu (viz také Osn. 1.8).
1.4. POPIS POHYBU RŮZNÝMI POZOROVATELI — KAŽDÝ TO VIDÍ JINAK

Obr. 1.24: LABORATORNÍ VÝTAŽNÁ SOUSTAVA شبات سیده جغرافیاً می‌باشد

místní rovnoběžka
místní poledník

Označme \(O'(0) \) polohu počátku soustavy \(S' \) v čase \(t = 0 \), \(\Phi \) nechť je zeměpiská šířka místa,
v němž je tato soustava umístěna. Poloměr Země je \(R_0 \). Vektory \(e'_1, e'_2, e'_3 \) tvoří pravotočivou
ortornormální bázi npiatou se souřadnicemi v bodě \(O' \), jsou tedy tečká k příslušným
souřadnicovým křivkám procházejícim bodem \(O' \) – poledníku, rovnoběžce a paprsku \(O'O' \).
Platí tedy (při označení \(\omega = 2\pi/T \))

\[
T(t) = \begin{pmatrix}
\cos \omega t \sin \Phi & \sin \omega t \sin \Phi & -\cos \Phi \\
-\sin \omega t & \cos \omega t & 0 \\
\cos \omega t \cos \Phi & \sin \omega t \cos \Phi & \sin \Phi
\end{pmatrix}, \quad S(t) = T(t)^{transp}, \quad (1.79)
\]

\[
\vec{\omega} = (0, 0, \omega)_S = (-\omega \cos \Phi, 0, \omega \sin \Phi)_S',
\]

\[
\Omega = \begin{pmatrix}
0 & \omega & 0 \\
-\omega & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}, \quad \Omega' = \begin{pmatrix}
0 & \omega \sin \Phi & 0 \\
-\omega \sin \Phi & 0 & -\omega \cos \Phi \\
0 & \omega \cos \Phi & 0
\end{pmatrix},
\]

\[
\vec{R}(t) = (R_0 \cos \omega t \cos \Phi, R_0 \sin \omega t \cos \Phi, R_0 \sin \Phi)_S,
\]

\[
\vec{V}(t) = (-\omega R_0 \sin \omega t \cos \Phi, \omega R_0 \cos \omega t \cos \Phi, 0)_S,
\]

\[
\vec{A}(t) = (-\omega^2 R_0 \cos \omega t \cos \Phi, -\omega^2 R_0 \sin \omega t \cos \Phi, 0)_S.
\]
56 KAPITOLA 1. POJMY KLASICKE MECHANIKA — POHYB A JEHO POPIS

Užitím (1.74) a s uvažením skutečnosti, že \((v') = (\dot{x}')\) a \((a') = (\ddot{x}')\) pak dostáváme pro neznámou vektorovou funkci \(\vec{r}'(t) = x'_1(t), x'_2(t), x'_3(t)\) soustavu diferenciálních rovnic:

\[
\begin{align*}
\dot{x}'_1 - 2\dot{x}'_2 \sin \Phi - x'_1 \omega^2 \sin^2 \Phi - x'_2 \omega^2 \cos \Phi \sin \Phi &= 0, \\
\dot{x}'_2 + 2\dot{x}'_2 \sin \Phi + 2\dot{x}'_1 \omega \cos \Phi - x'_2 \omega^2 &= -a_1 \sin \omega t + a_2 \cos \omega t, \\
\dot{x}'_3 - 2\dot{x}'_2 \omega \cos \Phi - x'_3 \omega^2 \cos \Phi \sin \Phi - x'_2 \omega^2 \cos^2 \Phi &= 0,
\end{align*}
\]

Zrychlění částice \(\ddot{a}(t) = (a_1(t), a_2(t), a_3(t))\) lze vypočítat buď za známou vektorovou funkci času, nebo je lze vyjádřit prostřednictvím polohy a rychlosti částice v soustavě \(\mathcal{S}\) a užitím transformačních vztahů převést do \(\mathcal{S}'\). Řešit problém nalezení trajektorie částice v soustavě \(\mathcal{S}'\) je obtížné, cílem je to, aby se jednalo o jednoduchý systém, jehož je matematicky kvalitní. Tímto problémem se usnadně člověk později. Největší významu lze najít některé případy, jimiž jsou křidlo a vlnění půdy.

Příklad 1.17. Velký půd v laboratorní soustavě.

Velkým pádem je význam polohy hmotného bodu, neboť využitího v okamžiku \(t = 0\) z výšky \(b\) nad zemským povrchem za předpokladu, že odpor okolního vzduchu proti pohybu objektu je zanedbatelný. Vzhledem k izomorfické soustavě \(\mathcal{S}\) se takový hmotný bod pohybuje se zrychlením \(\ddot{g}_0\), gravitačním, které lze v blízkosti zemského povrchu a v rozměru malých vzdušností od bodu \(\mathcal{O}'\) pokládat za konstantní vektor kolmý k povrchu Země, tj.

\[
\ddot{g}_0 = (0, 0, -g_0)\mathcal{S} = (-g_0 \cos \omega t \cos \Phi, -g_0 \sin \omega t \cos \Phi, -g_0 \sin \Phi)\mathcal{S}.
\]

POZNÁMKA: Směr gravitačního zrychlení při povrchu Země se na vzdušností 5km, měřené podle kterého z hlavních kružnic na zemské sféře, např. polokružníkci či rovniku, změní méně než o 0,05°. Velikost gravitačního zrychlení klesne o 1 procento své hodnoty na vzdušnosti 30km od povrchu Země. Rovnice (1.80) mají tvar:

\[
\begin{align*}
\dot{x}'_1 - 2\dot{x}'_2 \sin \Phi - x'_1 \omega^2 \sin^2 \Phi - x'_2 \omega^2 \cos \Phi \sin \Phi &= 0, \\
\dot{x}'_2 + 2\dot{x}'_2 \sin \Phi + 2\dot{x}'_1 \omega \cos \Phi - x'_2 \omega^2 &= -a_1 \sin \omega t + a_2 \cos \omega t, \\
\dot{x}'_3 - 2\dot{x}'_2 \omega \cos \Phi - x'_3 \omega^2 \cos \Phi \sin \Phi - x'_2 \omega^2 \cos^2 \Phi &= 0,
\end{align*}
\]

Interpretace jejich pravých stran je velmi názorná. Vektor

\[
\ddot{g} = (\omega^2 R_0 \sin \Phi \cos \Phi, 0, -g_0 + \omega^2 R_0 \cos^2 \Phi)\mathcal{S}
\]

je toto součtem gravitačního zrychlení \(\ddot{g}_0\) a odstředivého zrychlení \(\ddot{a}_{OD} = -\vec{a} \times (\vec{x} \times \vec{R}_0)\) při povrchu Země. Vektor \(\ddot{g}\) nazýváme obvykle třetím zrychlením a spojíme s ním světlý směr při zemském povrchu. (Je třeba se uvědomit, že takto definovaný „světlý směr“ se mění, vzdálenější od povrchu Země.)

Souřadnicové osy laboratorní vztažné soustavy jsou ve vzdušnéch odstavcích spojily se geometricky význačnými směry: polokružníkmi, rovnikem, obrobkou a paprskem, procházejícím daným místem na povrchu Země. Tato volba soustavy souřadnic je jistě geometricky velmi názorná. Fyzikálně přirozeně je však sepsání souřadnicových os s fyzikálně význačnými směry, v němž případě právě se světlým směrem při zemském povrchu. Tato volba odpovídá otočení soustavy souřadnic o úhel \(\delta\), který svislý vektory \(\ddot{g}_0\) a \(\ddot{g}\), kolikem osy \(x'_1\), popsanému matici přechodu

\[
T' = \begin{pmatrix}
\cos \delta & 0 & \sin \delta \\
0 & 1 & 0 \\
-\sin \delta & 0 & \cos \delta
\end{pmatrix}
\]
1.4. POPIS POHYBU RŮZNÝMI POZOROVATELI — KAŽDÝ TO VIDÍ JINAK

ze soustavy $S' = < O', e_1', e_2', e_3' >$ do soustavy $S'' = < O'', e_1'', e_2'', e_3'' >$, kde $e_1'' = e_1' \cos \delta + e_2' \sin \delta$, $e_2'' = -e_2' \cos \delta + e_3' \cos \delta$. Matice přechodu T'' ze soustavy S do S'' je dána součinem $T'' = T' T'' = S'' S$, kde matice T', S'' jsou dány vztahy (1.79). Názorně je zřejmé, že rovnice (1.80) lze snadno převést do soustavy S'' získané čářkováním veličin za dvoučářkování a nahrazením úhlu Φ součtem $\Phi + \delta$. Dostáváme tak soustavu rovnic

$$
\begin{align*}
 x_1'' &= \frac{1}{2} \omega t^2 + \left(h - \frac{g}{\omega} \right) \left(\cos \omega t + \omega t \sin \omega t - 1 \right) \sin (\Phi + \delta) + \cos (\Phi + \delta), \\
 x_2'' &= \left(h - \frac{g}{\omega} \right) \left(\omega t \cos \omega t - \sin \omega t \right) \sin (\Phi + \delta), \\
 x_3'' &= h - \frac{1}{2} \omega t^2 \sin (\Phi + \delta) + \left(h - \frac{g}{\omega} \right) \left(\cos \omega t + \omega t \sin \omega t - 1 \right) \cos (\Phi + \delta).
\end{align*}
$$

Správnost poměrně komplikovaného výsledku můžeme ověřit například pro limitní případ $\omega \to 0$ nebo pro volný pád na půdu, odpovídající hodnotám $\Phi = \pi/2$, $\delta = 0$, kdy odečíváme zjednodušení na tvar obvyklý pro parametrické vyjádření trajektorie volného pádu v inerciální vztahu soustavě, tj. $v' = (0, 0, h)$, $\Phi = \pi/2$, $\delta = 0$ dostáváme tento výsledek okamžitě. Pro $\omega \to 0$ využijeme 1-Hospitala pravidla při výpočtu limit

$$
L_1 = \lim_{\omega \to 0} \frac{\cos \omega t + \omega t \sin \omega t - 1}{\omega^2} = \lim_{\omega \to 0} \frac{-\sin \omega t + \sin \omega t + \omega^2 \cos \omega t}{2 \omega} = 1/2, \\
L_2 = \lim_{\omega \to 0} \frac{\cos \omega t \omega t - \sin \omega t}{\omega^2} = \lim_{\omega \to 0} \frac{\cos \omega t - \omega t \sin \omega t - t \cos \omega t}{2 \omega} = 0
$$

a opět dostáváme k zjednodušenému výsledku pro volný pád.

Zajímavá situace nastává pro $\Phi = 0$. Pak je $\delta = 0$ a $g = g_0(1 - \frac{\omega^2 R_0}{g_0})$ (volný pád na rovníku). Pak

$$
\begin{align*}
x_1'' &= 0, \\
x_2'' &= \left(h - \frac{g}{\omega} \right) \left(\omega t \cos \omega t - \sin \omega t \right), \\
x_3'' &= h + \frac{g}{\omega} \left(\cos \omega t + \omega t \sin \omega t - 1 \right).
\end{align*}
$$

Odhadneme nyní, jak se odchýlí místo dopadu předmětu od počátku O', nebudu-li předmět padat z příliš větší výšky. Zvolme $h = 500$ m. Doba volného pádu v inerciální vztahu soustavě by byla $t_0 = \sqrt{2h/g_0} = 10$ s. Zvolíme k tomu, že $\omega = 7.3 \times 10^{-3} s^{-1}$, je $\omega t_0 = 7 \times 10^{-3}$ a místo funkční $\cos \omega t$, sin ωt lze nahradit převzatým členem jejich Taylorova rozvoje $\cos \omega t \approx 1 - \frac{1}{2} \omega^2 t^2$, $\sin \omega t \approx \omega t - \frac{1}{6} \omega^3 t^3$. Pak

$$
\begin{align*}
x_1'' &= h - \frac{1}{2} \omega^2 \left(1 - \frac{\omega^2 t_0^2}{g} \right).
\end{align*}
$$
Označíme-li \(\tau \) dobu pádu, určenou podmínkou \(x''_3 = 0 \), je

\[
\tau = \sqrt{\frac{2h}{g}} \frac{1}{\sqrt{1 - \frac{h\omega^2}{g}}} \approx \sqrt{\frac{2h}{g}} = \tau_0 \implies x''_3 \approx \frac{1}{3} g\omega^2 \left(1 - \frac{h\omega^2}{g} \right) \approx \frac{1}{3} g\omega^3 \approx 0,25 \text{ m}.
\]

Větší, že při pádu i z nepříliš velké výšky způsobí nejmenší rychlost vztažné soustavy měřitelnou odchylku od očekávaného místa dopadu. Je třeba si však uvědomit, že přechodový výpočet byl prováděn bez uvažování skutečnosti, že předmět padá v odporujícím prostředí (vzduchu). Skutečná odchylka místa dopadu od očekávané polohy bude menší.
Kapitola 2

Principy klasické mechaniky

V předchozí kapitole jsme definovali veškeré pojmy, které jsou potřebné pro popis pohybu hmotných bodů (klasické částice), ve čtvrté kapitole jich použijeme pro popis pohybu kontinua. Způsob, jakým jsme pojmy zaváděli, již samozřejmě předvídáme postupy, které povedou v předpověďi pohybu na základě znalosti interakcí částice nebo soustavy částic s okolními objekty a znalostí stavu částice nebo soustavy v daném okamžiku. Základem zjištění, že je skutečně možné získať parametrické vyjádření trajektorie dané částice, tj. vektorovou funkci $\mathbf{r}(t)$ určující její polohu v daném okamžiku, jsou experimentální zkušenosti. Ty umožnily formulovat základní principy nebo postuláty (matematiky je nazývá třeba axiomy) klasické mechaniky, z nichž (a samozřejmě z jejich matematické formuluace) vyplývají všechny zákonnosti, vztahy, rovnice, atd., jimž se řídí pohyb částic, jejich soustav, těles — prostě objektů makrověta. Těmito principy jsou Newtonovy zákony. Jestliže k nim přidáme vztahy pro kvantitativní vyjádření interakce mezi makroskopickými objekty, máme v ruce skutečně kompletní soubor stavebních kamenů klasické newtonovské mechaniky. Další je záležitostí umění vytvořit z nich stavbu, tj. základní principy matematicky formulovat a použít pro odvození dalších zákonností umožňujících řešení obecných situací i konkrétních příkladů.

2.1 První Newtonův zákon a jak mu rozumět

Newtonovy zákony, a zejména první z nich, by Newton v dnešních učebnicích možná ani nepoznal. Každý autor má svou interpretační formuluaci, či zjednodušující předpoklady. Sám Newton, jak ukazují historické fyzičky, dosáhl k formulaci svých zákonů postupně a dlouho. Jen pokud jde o první zákon, byl spokojen až s jeho v pořadí devátou formulaci.
2.1.1 Newtonova formulace prvního zákona a související otázky

LEX I — PRVNÍ NEWTONŮV ZÁKON

Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directam, nisi quatenus illud a viribus impressis cogitatur statum suum mutaret.

Každě těleso setrvává ve svém stavu klidu, nebo rovnoměrném pohybu v daném směru, ledaže je nuceno vtištěnými silami svůj stav změnit.

Čteme-li pozorně, napadne nás hned několik otázek:

- Vůči jaké vztažné soustavě posuzujeme klid, nebo rovnoměrný pohyb v daném směru?
- Čím se Newtonova zdánlivě „archaická“ formulace liší od standardní, nejčastěji používané učebnicové — „Těleso setrvává v klidu, nebo rovnoměrném přímočarém pohybu, dokud není vtištěnými silami nuceno tento stav změnit“?
- Může těleso bez zásahu vnějších vlivů (v Newtonově pojetí vtištěných sil) setrvávat také v rovnoměrném rotácích pohybu?
- Co jsou to vtištěné (vnější) síly a co jsou to síly vůbec?
- Z kapitoly o kinematice vime, že rovnoměrný přímočarý pohyb hmotného bodu je totéž, co pohyb s nulovým zrychlením, v případě tělesa s nezanedbatelnými rozdíly bychom mohli mít na mysli pohyb jeho středu hmotnosti. Je tedy první zákon skutečně nezávislým postulátem, nebo je pouhým důsledkem zákona druhého? (Vzpomeňte na své znalosti ze střední školy, nebo se podívejte na další odstavec.)
2.1. PRVNÍ NEWTONŮV ZÁKON A JAK MU ROZUMĚT

2.1.2 Odpovědi na otázky k prvnímu Newtonovu zákonu

Zde jsou odpovědi na otázky z předchozího odstavce:

• Newton pracoval s pojmy absolutní čas, a co je pro jeho definici klidu a rovnoměrného pohybu v daném směru důležité, absolutní prostor. Tyto „objekty“ ovšem neexistují. Současným „absolutním“ vztázným objektom je kterákoli inerciální vztazná soustava. Invariantní v každé vztazné soustavě, nejen inerciální, je z hlediska klasické nerelativistické mechaniky časový interval

\[\Delta t = t_2 - t_1 = t'_2 - t'_1 \]

a prostorový interval

\[|\Delta \vec{r}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} = \]

\[= \sqrt{(x'_2 - x'_1)^2 + (y'_2 - y'_1)^2 + (z'_2 - z'_1)^2}. \]

• Odlučnost spočívá ve slovních spojeních, která jsou v Newtonově formulaci napájána kurzívou. Zejména rovnoměrný pohyb v daném směru zahrnuje i rovnoměrnou rotaci, nikoli jen rovnoměrný pohyb po přímce. Tato skutečnost je historickými studiemi prokázána mimo jakoukoli pochybnost. Další důležitou „drobností“ je předpoklad, že těleso ve svém stavu klidu nebo rovnoměrném pohybu v daném směru je, aby v něm mohlo setrvávat. O tělesech, která v takovém stavu nejsou, první Newtonův zákon nepojednává.

• Odpověď na třetí otázku je obsažena nejen v přesné Newtonově formulaci, jejíž důležitost jsme zdůvodnili již dříve odpovědi, ale také ve výsledcích experimentů. Budeme-li pohybující se těleso více a více opravdu ověřovat od vnitřních vlivů (pohyb vozíku s výborom kóžisky po speciálně upravené lavicí, pohyb vozíku po vzduchové lavici, kdy vzduchový poštír eliminuje tření, otáčení lépe a lépe vyváženého kola s co nejlepší nanovanými kóžisky, apod.), bude v pohybu, do kterého jsme je uvedli, setrvávat děle a děle. Je samozřejmě, že reálná situace nikdy nebude dokonale odpovídat požadavkům absence vtištěných sil, popřípadě eliminaci jejich vlivu — v tomto smyslu je první Newtonův zákon abstrakcí.

• V kontextu prvního Newtonova zákona můžeme pojem vtištěný síly chápat kvalitativně, jako vliv okolních těles, interakce studovaného tělesa s okolními objekty, apod. Okolní objekty jednoduše mohou způsobit, že těleso, které třeba bylo vzhledem ke zvolené inerciální vztazné soustavě ve stavu klidu, nebo rovnoměrného pohybu v daném směru (rovnoměrná translace, rovnoměrná rotace, jejich složení), nebudou v tomto stavu setrvávat. Pokud jde o sílu jako fyzikální veličinu, která popisuje interakcí objektů kvantitativně, je její definice záležitostí až druhého Newtonova zákona.
Pokud jsme se ztožnili s tvrzením, že první Newtonův zákon zahrnuje i rovnoměrnou rotaci tělesa, je zřejmé, že není důsledkem druhého zákona, který o rotačním pohybu tělesa jako celku nepojednává (uvědomíme za chvíli).

Ví išta corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in linea recta sita quatenus a viribus impressis cogitare status suum mutaret, Motus autem uniformis hic est duplex, progressivus secundum lineam rectam quam corpus centrum suo aequabiliter latu descriptum et circularis circa axem suum quenvis qui vel quiescit vel motus uniformis latus semper manet positionibus suis prioribus parallelus.

Inherentní síla setrvává každé těleso ve svém stavu klidu nebo rovnoměrného pohybu po přímce, pokud není interakčními silami přiměněno onen stav měnit. Tento rovnoměrný pohyb je však dvojí, postupný po přímcích, kterou těleso opisuje svým rovnoměrně se pohybujícím středem, a rotační kolem určité osy tělesa, která je buď v klidu nebo pohybující se rovnoměrně zůstává stálé rovnovážně se svými předchozími položkami.

Pojmu inherentní sílu lze rovněž dát interpretaci odpovídající dnešnímu pochádu na klasickou mechaniku. V tuto chvíli k ní však náleží potřebné zájem a vráťte se k ní později.

Později uvidíme, že setrvání tělesa v rovnoměrném translaci, nebo rovnoměrném rotačním pohybu, včetně možnosti superpozice, lze interpretovat jako důsledek spojení druhého a třetího Newtonova zákona. Obnovují se tedy otázky, zda první Newtonův zákon je nezvířatým axiomen. Při neexistenci absolutního prostoru ano. Lze jej totiž chápat jako existenční tvrzení představující současně definici inerciální vztahů soustavy, například takto:

První Newtonův zákon

Existují vztahy soustavy, zvané inerciální, v nichž těleso uvedené do stavu klidu, nebo rovnoměrného pohybu v daném směru setrvává v tomto stavu, dokud není interakcí s okolními objekty měno tento svůj stav změnit. Rovnoměrným pohybem v daném směru se přitom rozmístí rovnoměrný pohyb translaci, nebo rotační, nebo superpozice obou.

Jiná interpretace prvního Newtonova zákona, která se však týká pouze hmotných bodů, může být následující: „Každé dva vlnné hmotné body jsou navzájem v klidu nebo v rovnoměrném přímočárním pohybu. Vztahy soustavy, jejichž počet a osy jsou spojeny s volnými hmotnými body, nazýváme inerciální.‘’ Tímto způsobem jsme také inerciální soustavy zavedli v kapitole 1. Bez empirických podložených axiомů deklarujícího jejich existenci, jímž právě první Newtonův zákon může být, by však tento pojem byl prázdný.

2.2 Druhý Newtonův zákon a jeho dvojí čtení

První Newtonův zákon se týkal těles, která jsou od okolních vlivů oproštěna. Vypovídá z něj, že tělesa, která budou okolním vlivům naopak vystavena, nebudou
obecně se tvrdí, vůči inerciálním vztahům soustavám v klidu, nebo rovnoměrném pohybu v daném směru. Pro případ translace to znamená, že hmotný bod, resp. hmotný střed tělesa, nebude obecně v klidu, nebo v rovnoměrném přímočárném pohybu, rotači tělesa rovněž nebude obecně rovnoměrná. Rychlost bodu tedy neubude konstantní, a tedy jeho zrychlení neubude trvale nulové. Úhel mezi rychlosti rotujícího tělesa nebude konstantní, a tedy jeho úhelové zrychlení neubude trvale nulové. Na otázku, jak se tedy bude měnit rychlost hmotného bodu, rychlost středu hmotnosti tělesa, resp. úhelová rychlost tělesa, tj. jaké bude zrychlení, resp. úhelové zrychlení, však první zákon neodpovídá. Takovou odpověď dává druhý Newtonův zákon.

2.2.1 Newtonova formulace druhého zákona a související otázky

Také druhý Newtonův zákon uvedeme nejprve v originálním latinském znění s doslovým překladem.

Lex II — Druhý Newtonův zákon

Mutationem motus proportionalem esse vi motrici impressae & sierii secundum lineam rectam qua vis illa imprimitur.

Def: Vis impressa est action in corpus exercita, ad mutandum ejus statum vel quiescendi vel movendi uniformiter in directum.

Změna hmotnosti je úměrná vtištěné hybné síle a sleduje přírůst, podél níž je tato síla vtištěna.

Def: Vtištěná síla je působením vykonávané na těleso za účelem změny jeho stavu klidu, nebo rovnoměrného pohybu v daném směru.

$$\vec{p}(t) = m(t)\vec{v}(t), \quad \frac{d\vec{p}}{dt} = \frac{dm}{dt}\vec{v} + m\frac{d\vec{v}}{dt} = \dot{m}\vec{v} + m\ddot{\vec{v}}.$$ \hfill (2.1)

V případě konstantní hmotnosti je derivace hybnosti částice rovna součinu její hmotnosti a jejího zrychlení.

Také při promýšlení této formulace, stejně jako tomu bylo v případě prvního zákona, se nábízí několik komentářů a otázek.

- Zatímco v prvním zákoně jsme mohli pojem vtištěné síly chápat kvalitativně jako působení či vliv okolních objektů na udržení či neudržení jistého
polybového stavu tělesa (rovnomeného polybu v daném směru), formulace druhého zákona jasně směřuje ke kvantitativnímu vyjádření. Pojme hybná síla je příjemně s přísenou směr.

• Jak určíme hybnou sílu, je-li studovaná částice či těleso pod vlivem více okolních objektů?

• Samotné originálně znění druhého zákona naznačuje, že by zákon mohl sloužit k určování změn hybnosti částice (v případě její neměnné hmotností dokonce přímo k určování zrychlení). To znamená, možná předpověď pohybu částice, vypočteme-li její polohu \(r(t) \) v závislosti na čase. Aby takový přístup byl možný, je třeba znát hybnou sílu. Jak ji určíme?

• Newtonova definice hybné síly charakterizuje tuto sílu jako působení na částici s cílem změnit její hybnost. Je tedy hybná síla veličina, která je definitivicky určena jako derivace hybnosti, tj. je druhý Newtonův zákon definicí síly?

• Otázka, která se v souvislosti s předchozími dvěma vnučuje, zní: Není druhý Newtonův zákon definicí či tvrzením „v kruhu“? Nepotřebujeme k určení derivace hybnosti hybnou sílu a k zápisu hybné síly jako fyzikální veličiny časový průběh změn hybnosti?

Na tyto otázky postupně odpovíme.

2.2.2 Odpovědi na otázky k druhému Newtonovu zákonu

Zásadní otázku z předchozího odstavce je, zda druhý Newtonův zákon definuje sílu, nebo naopak, zda slouží k určení derivace hybnosti s tím, že hybnou sílu musíme zjistit jinak. Může se zdát, že odpovědi si musí protřečit. Přesto je možné, že dokonce nutné, dívat se na druhý Newtonův zákon oběma způsoby. Pokusme se tedy na položené otázky odpovědět.

• Hybná síla vystupující v druhém zákonu, ač již je konkrétně definována jakoliv, musí být fyzikální veličinou, která kvantitativní popisuje souhrnný vliv okolních objektů na studovanou částici. Je to jistá vektorová veličina \(\vec{F} \), její směr je shodný se směrem derivace hybnosti a její velikost je úměrná velikosti derivace hybnosti, tj.

\[
\frac{d\vec{v}}{dt} = \vec{k}\vec{F}.
\]

Otázku, co je konstantou úměrností, vyřešíme vhodnou volbou jednotek tak, aby konstanta byla rovna jedné a bezrozměrná. Jednotkou hybnosti je \(\text{kg}\text{m}\text{s}^{-1} \), její derivace má jednotku \(\text{kg}\text{m}\text{s}^{-2} \), která je současně jednotkou síly nazývanou newton. Tedy \(1\text{N} = 1\text{kg}\text{m}\text{s}^{-2} \).

• Souhrnný vliv okolních objektů na pohyb studované částice by měl být nějak „poskládán“ z vlivů každého z okolních objektů, kdyby tento objekt
působil na částici samostatně. Pro tuto chvíli přepokládejme, že působení jednotlivého objektu na částici je stejné, jako kdyby tam další okolní objekty nebyly. Pro tento předpoklad zatím nemáme argumenty, získáme je však v podobě třetího Newtonova zákona. Označme tedy hybné síly odpovídající objektům O₁, O₂ až Oₖ jako \(\vec{F}_1, \vec{F}_2 \) až \(\vec{F}_K \). Aniž známe jejich jednotlivá vyjádření, zde se nejpřírodnější vypočítat souhrnný vliv všech okolních objektů jako vektorový součet hybných sil \(\vec{F}_1 \) až \(\vec{F}_K \). Tento způsob stanovení souhrnného vlivu je rovněž potvrzován experimenty a často bývá nazýván princip superpozice sil. Je tedy
\[
\vec{F} = \vec{F}_1 + \vec{F}_2 + \cdots + \vec{F}_K = \sum_{k=1}^{K} \vec{F}_k. \tag{2.2}
\]
Sílu \(\vec{F} \) pak nazýváme výsledná síla, nebo výslednice sil. Stále ještě však nevíme, jakým způsobem vektor \(\vec{F}_k \) kvantitativně vyjadřuje vliv k-tého objektu na derivaci hybnosti studované částice.

- Abychom doplnili chybějící článek úvody o principu superpozice sil a zároveň odpověděli na třetí a čtvrtou otázku předchozího odstavce, musíme v myšlenkovém experimentu (ideálně), nebo skutečném experimentu (aproximativně) oprostit studovanou („testovací“) částici od vlivu všech okolních objektů, kromě jediného, k-tého. Pak budeme číst druhý Newtonův zákon zprava doleva, tj.

\[
\vec{F}_k = \left(\frac{d\vec{p}}{dt} \right)_k, \quad \text{popřípadě jen} \quad \vec{F}_k = m \vec{a}_k.
\]

Na základě pozorování polohy testovací částice určíme její zrychlení. To nám umožní zjistit závislost \(\vec{F}_k \) například na poloze testovací částice, na její rychlosti, popřípadě explicitní závislost na čase,

\[
\vec{F}_k = \vec{F}_k(\vec{r}, \vec{v}, t).
\]

Takovou závislost obvykle nazýváme silový zákon.

- Pokud uvedeným postupem, popřípadě jinými postupy, získáme potřebné silové zákony, můžeme pak již číst druhý Newtonův zákon zleva doprava, tj.

\[
\left(\frac{d\vec{p}}{dt} \right) = \vec{F}_1 + \vec{F}_2 + \cdots + \vec{F}_K,
\]

kde každý ze symbolů \(\vec{F}_k \) jíž nyní představuje konkrétní zápis daného silového zákona, který je kvantitativně vyjádřením vlivu k-tého objektu na studovanou částici. Tento zápis samozřejmě umožňuje vyjádření sily, již bude jiný okolní objekt působit v obdobné situaci na jinou testovací částici.

- Druhý Newtonův zákon tedy rozhodně není definicí či tvrzením „v krku“, nýbrž skutečně zásadním fyzikálním principem, který má, dalo by se říci, „dvě tváře tvoří celkový obraz jednoho obličeje“.

Známým příkladem nalezení silového zákona je Newtonův gravitační zákon. Výsledkem pro jeho určení byly zákony o oběhu planet kolem Slunce formulované Johannem Keplarem na základě astronomických pozorování Tychona de Brahe a částečně jeho vlastních. Sio tedy o skutečný experiment interpretovaný v aproximaci modelu soustavy čistic tvořené Sluncem a jednou (kteroukoliv) planetou. Zopakujeme nejprve stručně Keplerovy zákony, jak je známo ze střední školy. (Její podrobnějšího teoretického odvození vycházejícího již ze znalosti gravitačního zákona a z Newtonových zákonů si všimneme později.)

První Keplerův zákon: Planety obíhají kolem Slunce po eliptických dráhách blízkých kružnicím, v jejichž společném ohnisku je Slunce.

Druhý Keplerův zákon: Plochy opisované půlkrugy planety za stejně časové úseky jsou shodné.

Třetí Keplerův zákon: Poměr třetí mocniny velké polokruve eliptické dráhy planety a druhé mocniny její oběžné doby je pro všechny planety stejný.

Aniž bychom se pouštěli do studia skutečné historie tohoto problému, pokusme se o vlastní jednoduchou úvahu. Zjednodušme model oproti Keplerovým výsledkům ještě více a uvažujme o případu, kdy planeta obíhá kolem Slunce po kružnici. Žádná z planet sluneční soustavy tomuto předpokladu sice přesně neprovádí, kružnice je však v Keplerových zákonech jednou z přípustných trajektorií.

Obr. 2.1: Pohyb planety kolem Slunce a gravitační zákon

Označme poloměr kružnice, po něž se planeta v našem přibližném modelu pohybuje, jako \(r \), periodu oběhu \(T \) a kruhovou frekvenci \(\omega = 2\pi/T \). Vzhledem k platnosti druhého Keplerova zákona je jasné, že pohyb planety po kružnici
2.2. **DRUHÝ NEWTONŮV ZÁKON A JEHO DVOJÍ ČTENÍ**

musí být rovnoměrný (velikost úhlové rychlosti je tak rovna kruhové frekvence \(\omega\)). Tečné zrychlení planety je tedy nulové, normálové je určeno jedinou silou \(\vec{F}_g\), kterou na planetu působí Slunce. Tato síla má směr normály k trajektorii planety. (Indexem \(g\) předjímáme, že jde o sílu gravitační.) Platí

\[
m\ddot{a}_n = \vec{F}_g \implies F_g = m\omega^2 r = \frac{4\pi^2 m}{T^2} r.
\]

Současně je

\[
r^3 T^2 = K = \text{konst.} \implies \frac{r}{T^2} = \frac{K}{r^2} \implies F_g = 4\pi^2 K \frac{m}{r^2}.
\]

Konstanta \(K\) již podle třetího Keplerova zákona nezávisí na charakteristikách planety. Může však záviset na centrálním tělese, Slunci. Jak tato závislost vypadá, uvidíme, až se k problému vrátíme po výkladu třetího Newtonova zákona.

\[\spadesuit\]

Příklad 2.2. Impuls síly.

S druhým Newtonovým zákonem přímo souvisí jednoduchý pojem **impuls síly**. Předpokládejme, že na částici působí pouze jediný objekt silou obecně závislou na čase, tj. \(\vec{F} = \vec{F}(t)\). Otázku je, jakou změnu hybnosti částice způsobí tato síla v časovém intervalu \([\alpha, \beta]\). Z druhého Newtonova zákona přímo plyne

\[
\frac{d\vec{p}}{dt} = \vec{F}(t) \implies \Delta \vec{p}([\alpha, \beta]) = \int_{\alpha}^{\beta} \vec{F}(t) \, dt.
\]

Veličinu

\[
I([\alpha, \beta]) = \int_{\alpha}^{\beta} \vec{F}(t) \, dt \tag{2.3}
\]

nazýváme **impuls síly** \(\vec{F}\) v intervalu \([\alpha, \beta]\). Představme si, že síla působí podél

přímky, například cesty \(x\).
Obr. 2.2: K pojišti impuls síly

Znázorníme-li její závislost na čase graficky (viz Obr. 2.2), vidíme, že impuls v časovém intervalu \([\alpha, \beta]\) odpovídá ploše pod grafem.

2.3 Třetí Newtonův zákon a jeho význam

První dva Newtonovy zákony vypovídal o vlivu působení (či nepůsobení) okolních objektů na daný „testovací“ objekt (částicí či těleso) prostřednictvím vtištěných sil. Ale kterýkoli z objektů se může stát studovaným objektem a naopak, těleso, které jsme doposud cháplali jako studované či testovací, se v jiné úloze může stát objektem okolním. Je tedy logické očekávat, že vliv objektů bude vzájemný. Jak to se vzájemným působením je, říká třetí Newtonův zákon.

2.3.1 Newtonova formulace třetího zákona a podstata interakce

Třetí Newtonův zákon je z celé trojice pravděpodobně nejnejednodušší a nejpočetitelnější. I tak však má hluboký fyzikální význam. Výložně si jej opět na originální latinské formulaci a jejím doslovném překladu.

Lex III — Třetí Newtonův zákon

Actioni centrarior semper & equalem esse reactionem: sive corporum duorum actiones in se mutuo semper esse equales in partes contrarias dirigi.

Akce je stále opačná a rovna reakci: neboli vzájemně působení dvou těles jsou stále stejná a má míř opačnými směry.

Informace vyplývající z třetího Newtonova zákona jsou velmi obsažné a zdáleka nezohlednější jen fakt, že
2.3. TŘETÍ NEWTONŮV ZÁKON A JEHO VÝZNAM

- Působí-li objekt A na objekt B sílou \(\vec{F}_{AB} \), působí objekt B na objekt A sílou \(\vec{F}_{BA} \), přičemž \(\vec{F}_{BA} = -\vec{F}_{AB} \).

Zamyslíme-li se hlubší, můžeme učinit také následující závěry.

- Interakce, tj. vzájemné působení objektů, je dvouúčastná. Znamená to, že sily akce a reakce, jimiž na sebe navzájem působí objekty A a B, nejsou odlišně charakteristické dalších objektů, které mohou působit jak na A, tak na B. Závisí tedy pouze na charakteristikách objektů A a B samotných, a to jak na těch, kde si objekty „nesou s sebou“ (hmotnosti, náboje), tak obecně i na charakteristikách jejich mechanického stavu (pohyby, rychlosti), popřípadě explicitně na čase.

Předchozí závěry o dvouúčastnici a okamžité interakci jsou omezeny na oblast klasické (nerelativistické a nekvantové) mechaniky. V relativistické mechanice je nutné počítat s mezní rychlostí šíření veškerých signálů (rychlost světla ve vakuu je definována přesně hodnotou \(c = 299792458 \text{ m/s} \) a je univerzální konstantou). V kvantové mechanice se zase naopak setkáme s mnohuúčastnicí, tzv. výměnou interakcí, jejíž existence vyplývá z principu nerozlišitelnosti mikročástic, který způsobí, že se jakákoli výměna částic mezi sebou nepozná.

2.3.2 Silové zákony a základní interakce

V tomto odstavci si všimneme některých silových zákonů, které budeme v dalším výkladu již běžně používat. Pozorost budeme věnovat také čtyřem základním interakcím v přírodě a jejich souvislosti s „makroskopickými“ silovými zákony.

Příklad 2.3. Newtonův gravitační zákon.

Vraťme se k příkladu 2.1, v němž jsme zjistili, že Slunce působí na planetu sílou, která směřuje od planety ke Slunci a její velikost je přímo úměrná hmotnosti planety a nepřímo úměrná čtvereční vzdálenosti mezi planetou a Sluncem, \(F_y = 4\pi^2 K \frac{m}{r^3} \). Konstanta \(K \) nezávisí na planetě, ale na Slunci. Zapíšme tuto sílu vektorově.

\[
\vec{F}_y = 4\pi^2 K \frac{m}{r^3} \left(-\hat{r} \right) = -4\pi^2 K \frac{m}{r^3} \hat{r},
\]

kde \(\hat{r} \) je polohový vektor planety vůči Slunci, \(r^0 = \hat{r}/r \) je jednotkový vektor směřující od Slunce k planetě. Podle třetího Newtonova zákona však planeta působí na Slunce sílou \(-\vec{F}_y \), kterou však můžeme vyjádřit také ve tvaru

\[
-\vec{F}_y = 4\pi^2 K \frac{M}{r^3} \hat{r},
\]
Zvětšené

$\vec{F}_g = \frac{\kappa m M}{r^3}\vec{r}$, \(\kappa = 4\pi^2\). Při velkém vzdálenosti \(r \approx R\) se teoretickému pohybu momenta věže přidržují v závěrečné fázi přibližně stejná počáteční rychlost. Měřeným časy, je tak malý, že může být pohybovou rychlostí nějakého malého místa,

kde \vec{g} je jednokrát smerující zeměm o výšky h nad povrchem světla \vec{g}_0, $\vec{F}_g = \kappa M Z R^2 \vec{g}_0$.

$\vec{g} = \kappa \frac{M Z R^2}{R^2 Z} \vec{g}_0$.

Obr. 2.3: Interferace homotých částí.
2.3. TŘETÍ NEWTONŮV ZÁKON A JEHO VÝZNAM

Pole v malých plošných oblastech v blízkosti povrchu Země je přibližně homogenní, jeho intenzita je \(\vec{g} \). Zahrneme-li ještě opravu, která bere v úvahu neinerciálnost laboratorní soustavy, tj. se započte odstředivé zrychlení, hovoříme o tříhovém zrychlení. Vztah (2.5) představuje silový zákon, který je aproximací gravitačního zákona, vyhovující pro popis gravitačního pole za výše uvedených omezeních podmínek. Pro zajímavost provede třeba odhad lineárního rozmeru oblasti v blízkosti povrchu Země na rovině, v jehož rámci se směr gravitačního zrychlení nezmění o více než jeden stupeň.

Příklad 2.4. Coulombův zákon.

Hmotné částice mohou být nositeli elektrického náboje. Kromě gravitační interakce dané hmotnostmi \(m \) a \(M \) na sebe tedy ještě působí sílou související s jejich náboji \(q \) a \(Q \). Tato síla se říká *Coulambovým zákonem*

\[
\vec{F}_C = \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r^2}, \quad \varepsilon = \varepsilon_r\varepsilon_0, \quad \varepsilon_0 = 8.854187818 \cdot 10^{-12} \text{ Fm}^{-1}.
\]

\(\varepsilon_0 \) je *permitivita vaku*; jedná se o přesnou (dohodnutou) hodnotu, \(\varepsilon_r \) je *relativní permitivita prostředí*. Coulombův zákon je klíčovým silovým zákonem popisujícím další základní interakci v přírodě, *elektronmagnetickou*.

Obr. 2.4: Interakce nabitých částic

Vzhledem k tomu, že nositeli náboje mohou být pouze hmotné částice, nelze coulobmovskou interakci „osamostatnit“, vždy se superponuje s interakcí gravitační. Jaký je vliv gravitační interakce v případě, že bychom chtěli měřit coulobovskou sílu, můžeme odhadnout pomocí vzájemného gravitačního a elektrostatického působení třeba elektronu a prototmu. Předpokládejme, že uvažujeme...
o těchto dvou elementárních částicích v atomu vodíku. Jejich střední vzdálenost je tak rovna Bohnovu poloměru $a_0 = (5, 2917720859 \pm 0, 0000000036) \cdot 10^{-11}$ m. Náboj elektronu i prototnu, tzv. elementární náboj, je co do velikosti stejný, $e = (1, 60217733 \pm 0, 00000049) \cdot 10^{-19}$ C. Hmotnost elektronu je $m_e = (9, 1093897 \pm 0, 000054) \cdot 10^{-31}$ kg, protonu $m_p = (1, 6726231 \pm 0, 000001) \cdot 10^{-27}$ kg. Poměr velikostí gravitační a coulombovské síly vzájemného působení je tedy (nezávisle na vzdálenosti)

$$F_C = \frac{1}{4\pi \varepsilon_0} \cdot \frac{e^2}{m_e m_p} \approx 2, 3 \cdot 10^{39}.$$

Velikost gravitační interakce těchto částic je tedy vůči interakci elektrostatické zcela zanedbatelná.

Příklad 2.5: Nabita částice v magnetickém poli.

Magnetické pole je popsáno vektorem magnetické indukce $\vec{B} = \vec{B}(\vec{r}, t)$. Silové působení magnetického pole na nabitou částici pohybující se rychlostí \vec{v} je dáno magnetickou Lorentzovou silou

$$\vec{F}_L = q(\vec{v} \times \vec{B}).$$

![Obr. 2.5: Částice v elektrickém a magnetickém poli](image)

Nabitá částice pohybující se v elektromagnetickém poli o intenzi $ \vec{E}$ a indukci $ \vec{B}$ je urychlována silou

$$\vec{F} = q\vec{E} + q(\vec{v} \times \vec{B}).$$

Konkrétní pohyb takové částice budeme studovat v dalším odstavci.

Příklad 2.6. Pružná síla.

Malé těleso (hmotný bod) na vodorovně, resp. svislé pružině je znázorněno na Obr. 2.6.
2.3. TŘETÍ NEWTONŮV ZÁKON A JEHO VÝZNAM

OBR. 2.6: TĚLÍSKO NA PRUŽNÉ

S koncem nenapjaté pružiny spojíme počátek O osy x směrující podél pružiny. Předpokládáme-li že deformace pružiny je elastiční, tj. protažená nebo stlačená pružina zaujme po uvolnění opět původní délku, můžeme předpokládat, že platí Hookův zákon. Podle něj působí natažená či stlačená pružina na tělíslo sílou, jejíž velikost je úměrná změně délky pružiny a síla směřuje proti této změně. Platí tedy

$$F_p = -kx x^0,$$

(2.8)

kde x^0 je jednotkový vektor ve směru kladné osy x. Konstanta k se nazývá tukost pružiny a určuje, jak velkou sílu potřebujeme k protažení nebo stlačení pružiny o jednotku délky. V grafu (lineární) závislosti velikostí pružné síly na změně délky pružiny tedy představuje směrnicí. Podobně jako pružiny se v určitém rozsahu silového působení chovají i různé závěsy (dráty, provázky, apod.)

PŘÍKLAD 2.7. Třeči a odporové síly.

Protiv polohy těles v reálných experimentech působí třecí a odporové síly. I když většinou závisí na rozmezích tělesa, kde je započítat způsobem, který stále umožňuje pracovat s tělesem jako s hmotným bodem, polohuje-li se pouze translačním polohy. Nejjinénušší silový zákon pro třecí sílu, již působí na těleso podložka, po které je vlečeno, má tvar

$$\vec T_d = -f N \vec v^0, \quad \vec v^0 = \frac{\vec v}{v},$$

(2.9)

kde $\vec v^0$ je jednotkový vektor ve směru rychlosti tělesa, $\vec N$ je tlaková síla podložky na těleso a f je tzv. koeficient dynamického tření. Třecí síly jsou typickými silami závislémi na rychlosti tělesa. Z vyjádření velikostí třecí síly by tato závislost samozřejmě nebyla vidět, neboť velikost $T_d = f N$ na rychlosti nezávisí. Závislost na rychlosti je dána tím, že třecí síla směřuje vždy proti rychlosti. Ať se
těleso line kamkoli, směr síly \(\vec{T}_q \) se vždy „upraví“ do protisměru rychlosti. Obdobná situace je s odporovou silou, kterou působí hmotné prostředí, v němž se těleso pohybuje (odpor vzduchu proti pohybu automobilu, fotbalového míče či letící střely, odpor vody proti plující lodi nebo ponorce). Konkrétní situace aproximativně vcelku dobře vystihuje některý z následujících silových zákonů představujících Stokesův resp. Newtonův model odporové síly.

\[
\vec{F}_S = -6\pi \eta r \vec{v}, \quad \vec{F}_N = \frac{1}{2} CS v^2 \vec{v},
\]

(2.10)

kde \(\eta \) je charakteristika prostředí, nazývaná \textit{dynamická viskozita}, \(r \) je poloměr kulového tělesa, \(S \) je \textit{učinný průřez tělesa} — největší plocha jeho příčného řezu, tj. řezu kolmém na směr rychlosti pohybu, \(\rho \) je hustota prostředí, konstanta \(C \) zahrnuje vliv tvaru tělesa a určuje se empiricky, pro kouli je \(C = 0,5 \).

\[\text{OBR. 2.7: Tření a odpor prostředí}\]

Stokesův vztah platí pro těleso kulového tvaru a velmi malé rychlosti, Newtonův vztah vyhovuje i pro tělesa obecného tvaru. Použitelnost obou modelů se také liší pro různé velikosti rychlosti, jakou se těleso pohybuje v odporující prostředí. (Stokesův vztah platí pro velmi malé rychlosti, Newtonův lépe odpovídá realistickým situacím. Konkrétněji se těmito problémem budeme věnovat až v kapitole o průduch tekutin.)

Pouze zdánlivě by k tomuto příkladu mohla patřit otázka \textit{statického tření}. Vyjádření statické třečí síly však není silovým zákonem — přesvědčíme se o tom v příkladu 2.13.

Silové zákony, jiné jsou se věnovali v předchozích příkladech, i další, na které můžeme při řešení konkrétních situací narazit, představují většinou aproximativní popis vzájemněho působení objektů makrosvěta. Podstatou řady z nich jsou však interakce v oblasti mikrosvěta. V přírodě se uplatňují čtyři základní typy interakcí: gravitační, elektromagnetická, slabá a silná. Aniž bychom se jím nyní podrobně věnovali jednotlivě či v rámci úvah o snahách o jejich sjednocení, můžeme je velmi stručně charakterizovat.
2.4. NEWTONOVO ŽÁKONY A POHYBOVÉ ROVNICE

- **Gravitáční interakce** představuje vzájemné působení jakýchkoliv hmotných objektů. Podléhají jí univerzálně všechny objekty nesoucí hmotnost.

- **Elektromagnetická interakce** je vzájemné působení objektů nesoucích náboj, a to jak objektů v klidu, tak pohyblivých.

- **Slabá interakce** se uplatňuje především při jaderných reakcích (některé typy jaderného rozpadu).

- **Silná interakce** působí na jaderné úrovni. Představuje jednak vzájemné působení kvarků tvořících protony a neutrony, jednak interakci protonů a neutronů, která drží polohomádě atomové jádro.

2.4 Newtonovy zákony a pohybové rovnice

V situaci, kdy máme k dispozici základní silové zákony, z nichž můžeme pomocí principu superpozice vytvořit výslednici, tj. Newtonovo „hybnou sílu“, můžeme řešit základní úlohu dynamiky. Na základě interakce testovací částice s okolními objekty a se znalostí jejího mechanického stavu v počátečním okamžiku vypočteme její trajektorii. Pak budeme vědět, kde se částice nacházela v okamžicích minulých a kde se bude nacházet v okamžicích budoucích (samozřejmě, pokud se v časovém intervalu, v němž ji sledujeme, nezmění její interakce s okolím tak, že by výpočet již neodpočítal).
2.4.1 Od interakcí ke zrychlení

Příklad 2.8. Pohyb po nakloněné rovině — bez tření.

Velice jednoduchým příkladem je pohyb malé kostky (hmotného bodu) o hmotnosti m po nakloněné rovině o úhel sklonu α umístěné v homeogeneum těžovém poli Země (těžové zrychlení g) a připevněné k vodorovné podložce (Obr. 2.8).

\[\vec{F}_G = m\vec{g} \]

Obr. 2.8: Kostka na nakloněné rovině

Uvážíme dvě situace: tření mezi kostkou a nakloněnou rovinou je, resp. není zanedbatelné. V každém případě zanedbáme odpor vzhledu proti pohybu kostky. V první situaci, bez tření, působí na kostku Země těžovou silou $\vec{F}_G = m\vec{g}$, nakloněná rovina (podložka) tlačovou silou \vec{N}. Zatímco pro těžovou sílu máme k dispozici silový zákon $\vec{F}_G = m\vec{g}$, u tlačové síly podložky pouze víme, že je k podložce kolmá. Její velikost předem neznáme.
2.4. NEWTONOVY ZÁKONY A POHYBOVÉ ROVNICE

POZNÁMKA: Uvědomme si hned u tohoto jednoduchého příkladu, jak je to s působění jednotlivých sil v reálné situaci. Do kterého bodu v tělesu můžeme umístit tihovou sílu? Do kterého bodu tlakovou sílu podložky? Pokud těleso aproximujeme hmotným bodem, jsou působění všech sil od okolních objektů umístěna přímo v tomto bodě. Ve skutečnosti však působí elementární tihová síla $dF_\text{G} = g \, dm = g \, dV$ na každý objemový element tělesa o hmotnosti dm, celková tihová síla je výsledkem (vektovým součtem) elementárních sil. Výsledná tihová síla má na těleso stejný pohybový účinek, translační i rotační, jako všechny elementární síly dohromady, je-li umístěna ve středu hmotností (nebo v bodech ležících na svrchní přímce procházející středem hmotností — tuto otázku se budeme zabývat v dalších kapitolech). Elementární tlaková síla dN působí na kostku v každém plošném elementu dS její střečně plochy s podložkou, celková tlaková síla je opět výsledkem elementárních tlakových sil. Existuje řešení „přirozených sil“, do kterého je třeba umístit výslednou tlakovou sílu, aby její pohybový účinek na těleso byl stejný jako účinek všech elementárních tlakových sile dohromady. Situace je znázorněna na Obr. 2.9. Umístění působění výsledné tihové a výsledné tlakové síly má své fyzikální zdůvodnění, pro jehož pochopení je však pořádná znalost důležitých důsledků druhého a třetího Newtonova zákona — impulsových vět. Proto se k tomuto problému vrátem až po jejich odvození.

Obr. 2.9: PŮSOBĚNÍ TIHOVÝCH A TLAKOVÝCH SÍL

\[\vec{F}_G = \int \vec{g} \, dV, \quad \vec{N} = \oint \vec{dN}. \]

Kostku povazujeme za hmotný bod, do kterého umístit působění všech sil od okolních objektů. Jako vztahovanou soustavu volíme soustavu laboratorní a povazujeme ji za inerciální. Druhý Newtonův zákon má tvar

\[m \vec{a} = m \vec{g} + \vec{N}. \]

K tomu, abychom tuto vektorovou rovnici mohli rozepsat do složek, potřebujeme ještě specifikovat soustavu souřadnic. Její volba je libovolná, a proto ji lze vybrat tak, aby byl výpočet co nej jednodušší. Výhodné je volit některé osy soustavy rovnoběžné s fyzikálně nebo geometricky významnými směry, pokud
takové úloha obsahuje. V našem případě je fyzikálně významný směr určen třího-
vým zrychlením, geometricky významný směr pak nakloněnom rovinou. S oběma
těmito směry nemůžeme souřadnicové osy spojit, neboť nejsou kolmé. Je třeba
si pro výpočet vybrat jeden z nich. Zkuste postupně obojí volbu, výsledky
samozřejmě musí vyjít shodné.

Nejprve zvolme osu *x* podél nakloněné roviny (geometricky význačného směru).
Osu *y* zvolme tak, aby vektor *j* ležel v rovině *xy*. Osa *z* pak je kolmá na ro-
vinu *xy* a orientována tak, aby osy *x*, *y* a *z*, pravé v uvedeném pořadí, tvořily
pravotočivou soustavu. Zápis druhého Newtonova zákona ve složkách má tvar
\[
mx = mg \sin \alpha, \\
my = -mg \cos \alpha + N, \\
mez = 0.
\]

Třetí rovnicí je přímo určena z-ová složka zrychlení, ve zbývajících dvou nezávis-
lých rovnicích však jsou tři neznámé, *a*_x, *a*_y a *N*. Soustava má tedy nekonečně
mnoho řešení (jednu z neznámých lze volit libovolně a další dvě dopočítat). Ex-
periment však ukazuje, že pokložme-li takovou kostku na hladkou nakloněnou
rovinu, je její zrychlení určeno jednoznačně. Znamená to, že existuje ještě další
rovnice pro neznámé *a*_x, *a*_y a *N*, kterou jsme zatím nepoužili a ani jsme si
ji neuvědomili. Tato rovnice již nesouvise s druhým Newtonovým zákonem —
ten jsme využili zeza. Je však určena požadavkem, že kostka stále spočívá na
nakloněné rovině. Tento požadavek je matematicky vyjádřen v podobě nezbytné
podmínky hladké na y-ové složce pokolového vektoru kostky, *y(t) = 0*. Odtud
*a*_y = 0. Řešení soustavy má pak tvar
\[
a_x = g \sin \alpha, \quad a_y = 0, \quad a_z = 0, \quad N = mg \cos \alpha, \quad a = g \sin \alpha.
\]

Proveďme výpočet ještě pro druhou možnost volby soustavy souřadnic. Osu
y' ztočíme s opačným směrem ke směru třího véryzrychlení, osu *x*' zvolme
vodorovně a osu *z*' opět tak, aby soustava souřadnic byla pravotočivá. Vektorový
tvar druhého Newtonova zákona je na volbě soustavy souřadnic nezávislý, jeho
rozděl kolodé složek je následující:
\[
ma'_x = N \sin \alpha, \\
ma'_y = -mg + N \cos \alpha, \\
ma'_z = 0.
\]

Vazební podmínka má nyní tvar *y*′ = −*x*' tgα, tj. *a*′_y = −*a*′_x tgα. Řešení soustavy
je
\[
a'_x = g \sin \alpha \cos \alpha, \quad a'_y = g \sin^2 \alpha, \quad a'_z = 0, \quad N = mg \cos \alpha, \quad a = g \sin \alpha.
\]

Výsledky při obojí volbě soustavy souřadnic jsou v souladu, jak jsme očekávali.
Přidejme nyní třetí sílu. Ta působí proti polohu kostky. Známe tedy její směr,
nikoli však zatím její velikost.
2.4. **NEWTONOVY ZÁKONY A POHYBOVÉ ROVNICE**

Tři síly je podobně jako tlaková vektorovým součtem elementárních sil, tj. \(\mathbf{T} = \int \mathbf{F} \). Jejich působení jsou rozložena ve výše ploše kostky s podložkou.

Předpokládejme, že kostka již je v pohybu, takže je dynamická třecí síla. Použijme pro ni nejednodušší silový zákon (2.9). Pro výpočet zvolme souřadnicovou soustavu, v níž je osa \(x \) namířena podél nakloněné roviny (první alternativa volby v předchozím výpočtu). Druhý Newtonův zákon ve vektorovém tvaru

\[
m\mathbf{a} = mg \mathbf{g} + \overrightarrow{N} + \overrightarrow{T}_d
\]

rozdělíme do složek:

\[
ma_x = mg \sin \alpha - Nf, \\
ma_y = -mg \cos \alpha + N, \\
ma_z = 0.
\]

Vazelní podmínka je stejná, jako při pohybu bez tření, vyplývá z ní tedy \(a_y = 0 \). Řešení soustavy je

\[
a_x = g \sin \alpha - g f \cos \alpha, \quad a_y = 0, \quad a_z = 0, \quad N = mg \cos \alpha.
\]

Zamysleme se nad tímto řešením. Tří sílu jsme „namiřili“ proti směru osy \(x \), což odpovídá pohybu kostky směrem dolů. (Kdybychom změnou počátečních podmínek uvedli kostku do pohybu směrem vzhůru, směřovala by třetí síla podél klidné osy \(x \).) Co když \(x \)-ová složka zrychlení bude záporná? V situaci, kdy jsme uvedli kostku do pohybu podél nakloněné roviny směrem dolů rychlosti \(\mathbf{v}_0 = (v_0, 0, 0) \), to znamená, že se kostka brzdí. Její rychlost závisí na čase vztahu \(v_x = v_0 + (g \sin \alpha - g f \cos \alpha) t \), \(v_y = 0 \), \(v_z = 0 \). Kostka se zastaví v okamžiku, kdy \(v_y = 0 \), tj.

\[
t_0 = \frac{v_0}{g f \cos \alpha - g \sin \alpha}.
\]

V případě, že \(v_0 = 0 \), se kostka vůbec nerozejde. Bude na nakloněné rovině v klidu ležet. Zajímavou otóžkou pak je, jak to je se silami, které na kostku působí. Působícími silami jsou opět síla tlaková, síla tlaková a síla třecí, tentokrát však statická. Pro tu ale nemáme silový zákon. Pomíje nám však skutečnost, že výslednice sil, které působí na kostku v klidu, musí být nulová.

\[
m\mathbf{g} + \overrightarrow{N} + \overrightarrow{T}_d = 0 \quad \Rightarrow \quad mg \sin \alpha - T_s = 0, \quad -mg \cos \alpha + N = 0 \quad \Rightarrow \quad N = mg \cos \alpha, \quad T_s = mg \sin \alpha.
\]

Statická třecí síla se tedy „přizpůsobila situaci“. Její hodnota se „nastavila“ tak, aby právě vykompensovala \(x \)-ovou složku součtu zbývajících sil \(m\mathbf{g} + \overrightarrow{N} \). Uspešámejme nyní pokus tak, že budeme nakloněnou rovinu, na níž kostka v klidu leží, zvedat. Experiment říká, že při určitém úhlu sklonu \(\alpha_0 \) se kostka dá do pohybu. Znamená to, že povrchovy drsnosti, díky kterým se vzájemné působení podložky a kostky projevuje statickou třecí silou, již kostku „neudrží“, velikost statické
třecí síly překročila určitou mez $T_{s,\text{max}}$. Touto mezí, která závisí mj. na kvalitě styčných ploch, je definován \textit{koeficient statického tření} f_0:

$$T_{s,\text{max}} = N f_0 \implies f_0 = \frac{T_{s,\text{max}}}{N}.$$

Koeficient statického tření je veličina, která se určuje empiricky. Je větší než koeficient dynamického tření, tj. $f_0 > f$. Úhel sklonu nakloněné rovní α_0, při kterém se kostka dá do pohybu, je určen maximální přípustnou statickou třecí silou:

$$mg \sin \alpha_0 = N f_0 \implies mg \sin \alpha_0 = mg f_0 \cos \alpha_0 \implies \tan \alpha_0 = f_0.$$

Řešme ještě pohyb kostky pro případ, že jí udělíme rychlost $v_0 = (-v_0, 0, 0)$ směrem vzhůru po nakloněné rovině. Dynamická třecí síla má nyní opačný směr než při pohybu kostky dolů. Druhý Newtonův zákon ve sklozkách má tvar

$$ma_x = mg \sin \alpha + N f, \quad ma_y = -mg \cos \alpha + N, \quad ma_z = 0. \quad (2.11)$$

S uvážením vazební podmínky $y(t) = 0 \implies a_y = 0$ dostáváme řešení

$$a_x = g(\sin \alpha + f \cos \alpha), \quad a_y = 0, \quad a_z = 0, \quad N = mg \cos \alpha.$$

Závislost rychlosti na čase je $\ddot{v}(t) = (-v_0 + a_x t, 0, 0)$. Rychlost kostky nabude nulové hodnoty v okamžiku

$$t' = \frac{v_0}{g(\sin \alpha + f \cos \alpha)}.$$

Pokud je $\alpha > \alpha_0$, rezjede se kostka sama opět dolů. V opačném případě se zastaví a bude v klidu. Uvědomte si, co nastane v takovém případě: Zatímco dynamická třecí síla směřovala při brzdění kostky dolů, bude statická třecí síla směřovat vzhůru. Musí totiž kompenzovat průmět tihové síly do směru nakloněné roviny. Jinak by se kostka v klidu na nakloněné rovině neudržela. Obr. 2.10 znázorňuje časový průběh x-ové skožky třecí síly (osadení její skožky jsou nulové) pro různé situace popsané výše.
2.4. **NEWTONOVY ZÁKONY A POHYBOVÉ ROVNICE**

\[F = m g + N + T \]

Obr. 2.10-a: Kostka na nakloněné rovině se třením
a) $v_0 = v_0 > 0$, $f_0 < \tan \alpha$

\[v_0 x = 0 \]

\[f_0 \tan \alpha \]

\[-mg \cos \alpha \]

\[-mg \sin \alpha \]

\[v_0 t \]

\[v_0 t \Delta t \]

\[v_0 = 0, f_0 < \tan \alpha \]

\[v_0 x = 0 \]

\[f_0 \tan \alpha \]

\[-mg \cos \alpha \]

\[-mg \sin \alpha \]

\[v_0 t \]

\[v_0 t \Delta t \]

\[v_0 = -v_0 < 0, \alpha < \alpha_0 \]

\[v_0 x = 0 \]

\[f_0 \tan \alpha \]

\[-mg \cos \alpha \]

\[-mg \sin \alpha \]

\[v_0 t \]

\[v_0 t \Delta t \]

\[v_0 = -v_0 < 0, \alpha > \alpha_0 \]

\[v_0 x = 0 \]

\[f_0 \tan \alpha \]

\[-mg \cos \alpha \]

\[-mg \sin \alpha \]

\[v_0 t \]

\[v_0 t \Delta t \]

\[v_0 = 0, f_0 < \tan \alpha \]

\[v_0 x = 0 \]

\[f_0 \tan \alpha \]

\[-mg \cos \alpha \]

\[-mg \sin \alpha \]

\[v_0 t \]

\[v_0 t \Delta t \]

\[v_0 = 0, f_0 < \tan \alpha \]

\[v_0 x = 0 \]

\[f_0 \tan \alpha \]

\[-mg \cos \alpha \]

\[-mg \sin \alpha \]

\[v_0 t \]

\[v_0 t \Delta t \]

\[v_0 = 0, f_0 < \tan \alpha \]

\[v_0 x = 0 \]

\[f_0 \tan \alpha \]

\[-mg \cos \alpha \]

\[-mg \sin \alpha \]

\[v_0 t \]

\[v_0 t \Delta t \]

\[v_0 = 0, f_0 < \tan \alpha \]

\[v_0 x = 0 \]

\[f_0 \tan \alpha \]

\[-mg \cos \alpha \]

\[-mg \sin \alpha \]

\[v_0 t \]

\[v_0 t \Delta t \]

\[v_0 = 0, f_0 < \tan \alpha \]

\[v_0 x = 0 \]

\[f_0 \tan \alpha \]

\[-mg \cos \alpha \]

\[-mg \sin \alpha \]

\[v_0 t \]

\[v_0 t \Delta t \]

\[v_0 = 0, f_0 < \tan \alpha \]

\[v_0 x = 0 \]

\[f_0 \tan \alpha \]

\[-mg \cos \alpha \]

\[-mg \sin \alpha \]

\[v_0 t \]

\[v_0 t \Delta t \]

\[v_0 = 0, f_0 < \tan \alpha \]

\[v_0 x = 0 \]

\[f_0 \tan \alpha \]

\[-mg \cos \alpha \]

\[-mg \sin \alpha \]

\[v_0 t \]

\[v_0 t \Delta t \]

\[v_0 = 0, f_0 < \tan \alpha \]

\[v_0 x = 0 \]

\[f_0 \tan \alpha \]

\[-mg \cos \alpha \]

\[-mg \sin \alpha \]

\[v_0 t \]

\[v_0 t \Delta t \]

\[v_0 = 0, f_0 < \tan \alpha \]

\[v_0 x = 0 \]

\[f_0 \tan \alpha \]

\[-mg \cos \alpha \]

\[-mg \sin \alpha \]

\[v_0 t \]

\[v_0 t \Delta t \]
2.4. **Newtonovy zákony a pohybové rovnice**

Příklad 2.9. Kostka na pohyblivé nakloněné rovině.

Upravme nyní zadání předchozí úlohy tak, že nakloněná rovina o hmotnosti \(M \) nebude připevňena k vodorovné podložce, napač po ní bude moci klouzat bez tření. Také kostka se po nakloněné rovině může pohybovat bez tření, a jako předtím zanedbáme odpor prostředí. Úkolem je určit zrychlení kostky \(\ddot{a} \) i zrychlení nakloněné roviny \(\ddot{A} \). Řešíme tedy pohyb soustavy tvořené dvěma tělesy. Druhý Newtonův zákon proto musíme formulovat pro každé z nich. V Obr. 2.11 jsou zrekveny síly působící na kostku i síly působící na nakloněnou rovinu. Na kostku působí Země tříhou silou \(m\vec{g} \) a nakloněná rovina tříhou silou \(\vec{N} \).

![Diagram](image)

Obr. 2.11: Kostka a nakloněná rovina — k příkladu 2.9

Na nakloněnou rovinu působí Země tříhou silou \(M\vec{g} \), kostka tříhou silou \(-\vec{N} \) (síly \(\vec{N} \) a \(-\vec{N}\) jsou akce a reakce) a vodorovná podložka tříhou silou \(\vec{P} \). Druhý Newtonův zákon pro jednotlivé částice má tvar

\[
m\ddot{a} = m\vec{g} + \vec{N}, \quad M\ddot{\vec{A}} = M\vec{g} - \vec{N} + \vec{P}.
\]

Soustavu souřadnic zvolíme tentokrát tak, že osa \(x \) je vodorovná podle obrázku, osa \(y \) směřuje proti tříhoumu zrychlení a soustava tvořená osami \(x, y \) a \(z \) je...
Pravotočivá. Předchozí vektorové rovnice mají následující vyjádření ve složkách:

\[
\begin{align*}
ma_x &= -N \sin \alpha, \\
ma_y &= -mg + N \cos \alpha, \\
ma_z &= 0 \implies a_z = 0,
\end{align*}
\]

\[
\begin{align*}
MA_x &= N \sin \alpha, \\
MA_y &= -Mg - N \cos \alpha + P, \\
MA_z &= 0 \implies A_z = 0.
\end{align*}
\]

Soustava čtyř rovnic tvořená prvními dvojicemi rovnic uvedených soustav obsahuje 6 neznámých \(a_x, a_y, A_x, A_y, N\) a \(P\). Potřebujeme dvě vazební podmínky. První z nich je jednoduchá — naklonění rovina stále spočívá na vodorovně podložce, tj. \(Y(t) = 0 \implies A_y = 0\). Druhá podmínka vychází ze skutečnosti, že kostka stále spočívá na nakloněné rovině. Znamená to, že \(\text{relativní zrychlení} \ a_{rel} = \ddot{a} - \ddot{A}\) kostky vůči nakloněné rovině je s nakloněnou rovinou trvale rovnoběžné (zrychlení kostky vzhledem k pozorovateli spojenému s nakloněnou rovinou měří podél nakloněné roviny). Vazební podmínka je tedy

\[
\frac{a_y - A_y}{a_x - A_x} = \tan \alpha.
\]

Jeho řešení (proveďte sami) je

\[
\begin{align*}
a_x &= -\frac{mg \sin \alpha \cos \alpha}{M + m \sin^2 \alpha}, \\
a_y &= -\frac{(m + M)g \sin^2 \alpha}{M + m \sin^2 \alpha}, \\
A_x &= \frac{mg \sin \alpha \cos \alpha}{M + m \sin^2 \alpha}, \\
A_y &= 0, \\
A_z &= 0,
\end{align*}
\]

\[
N = \frac{mMg \cos \alpha}{M + m \sin^2 \alpha}, \quad P = \frac{M(m + M)g}{M + m \sin^2 \alpha}.
\]

\[\heartsuit\]

Příklad 2.10. Matematické kyticlo.

Smallskp

Jednoduchým mechanickým modelem je **matematické kyticlo**. Popsali jsme je již v příkladu 1.1 na obr. 1.2. (Ose soustavy souřadnic byly v příkladu 1.1.)
2.4. NEWTONOVY ZÁKONY A POHYBOVÉ ROVNICE

Značený x_1, x_2 a x_3, zde pro jednoduchost x, y a z. Kulíčka o hmotnosti m se pohybuje na vlákne stálé délky l v rovině xz, soustava má tedy jeden stupeň volnosti a její úkazitá poloha je jednoznačně popsána časovou závislostí úhlové výchylky $\varphi = (t)$. Pomocti druhého Newtonova zákona sestavíme rovnice, z nichž lze zjistit, že závislost $\varphi = (t)$ v principu získat. Do obrázku zakreslíme síly, jimiž za kulíčku působí její okolí.

Obr. 2.12: Matematické kyvalo

Zanedbáme-li odpor prostředí proti pohybu kulíčky, zbývá řídící síla $\vec{F}_G = mg$, již na kulíčku působí Země, a tahová síla vlákna \vec{T}. Výslední těchto dvou sil, Newtonovu „hybnou sílu“, označme $\vec{F} = mg + \vec{T}$. V levé části Obr. 2.12 jsou zakresleny síly mg a \vec{T}, v pravé jejich výslednice \vec{F}.

Druhý Newtonův zákon má tvar

$$\vec{m}a = mg + \vec{T}.$$

Otázku jen nyní volba soustavy souřadnic. Jednou z možností je použít pro rozklad vektorů pevné soustavy $<O; x, y, z>$. Pak

$$ma_x = -T \sin \varphi, \quad ma_y = -mg + T \cos \varphi, \quad ma_z = 0. \quad (2.14)$$

Vazební podmínku $x^2 + y^2 = l^2$ lze alternativně vyjádřit takto:

$$x = l \sin \varphi, \quad y = -l \cos \varphi,$$

pro rychlost a zrychlení pak dostaneme

$$v_x = \dot{x} = l\dot{\varphi} \cos \varphi, \quad (2.15)$$

$$v_y = \dot{y} = l\dot{\varphi} \sin \varphi, \quad (2.16)$$

$$v = \sqrt{v_x^2 + v_y^2} = \sqrt{x^2 + y^2} = l|\dot{\varphi}| = l|\omega|. \quad (2.17)$$
\[a_x = \ddot{x} = -l\ddot{\varphi}^2 \sin \varphi + l\ddot{\varphi} \cos \varphi, \quad (2.18) \]
\[a_y = \ddot{y} = l\ddot{\varphi}^2 \cos \varphi + l\ddot{\varphi} \sin \varphi, \quad (2.19) \]
\[a = \sqrt{a_x^2 + a_y^2} = \sqrt{\ddot{x}^2 + \ddot{y}^2} = l\sqrt{\ddot{\varphi}^4 + \ddot{\varphi}^2} = l\sqrt{\omega^4 + \varepsilon^2}. \quad (2.20) \]

Vyjádření složek zrychlení pomocí úhlové výchylky a jejích derivací dosadíme do (2.14). Vynásobíme-li první rovnici soustavy (2.14) \(\cos \varphi \), druhou \(\sin \varphi \) a sečteme, vyloučíme tím \(T \) a dostaneme

\[l\ddot{\varphi} = -g \sin \varphi \implies \ddot{\varphi} + \sqrt{\frac{g}{l}} \varphi = 0. \quad (2.21) \]

Získali jsme rovnici pro neznámou funkci \(\varphi(t) \). Kromě této funkce obsahuje rovnice i její druhou derivaci. Rovnice pro neznámé funkce popisující trajektorii částice, resp. obecněji mechanické soustavy, nazýváme \textit{pohybové rovnice}. Nalezení neznámé funkce je otázkou matematických postupů řešení tzv. \textit{obvětvených diferenciálních rovnic}, které si ukážeme v dalším odstavci. Pokud v naši úkaze o kyvadle dokážeme později určit funkci \(\varphi(t) \), pak s její znalostí můžeme zjistit i časovou závislost velikosti tahové síly \(T(t) \).

Pokusme se ještě vyjádřit druhý Newtonův zákon způsobem, který umožní zjevně zjednodušení výpočtu oproti předchozímu postupu. Použijeme pro rozklad vektorového tvaru druhého Newtonova zákona soustavy souřadnic, která je přirozeným způsobem spojena s trajektorií kuličky, polublívěho reperu. Vektor binormály bude v tomto případě vždy souběžný s ose \(z \), ač již souřadně nebo nesouřadně, a průměty sil do binormály jsou tedy mukové. Pro zjednodušení tedy budeme pracovat pouze v rovině určené jednotkovým vektem tečny \(\vec{r} \) a jednotkovým vektem hlavní normály \(\vec{n} \) (viz Obr. 2.13).

\[\text{Obr. 2.13: Matematické kyvadlo ještě jednou} \]
24. NEWTONOVY ZÁKONY A POHYBOVÉ ROVNICE

Rezkladem vektorové rovnice představující druhý Newtonův zákon do směru tečny a hlavní normály dostaneme

\[ma_r = -mg \sin \varphi, \quad ma_n = T - mg \cos \varphi. \quad (2.22) \]

Tečné a normálové zrychlení \(a_r \) a \(a_n \) jsou dána vztahy (1.34) a (1.39), tj.

\[\ddot{\varphi} + g \sin \varphi, \quad T = mg \cos \varphi + ml \dot{\varphi}^2. \]

Výsledná síla \(\vec{F} = m \vec{g} + \vec{T} \) má tečnou a normálovou složku určenou vztahy (2.22),

\[\vec{F}_r = m \ddot{\varphi} = -mg \sin \varphi \vec{r}, \quad \vec{F}_n = m \ddot{\varphi}_n = (T - mg \cos \varphi) \vec{n}. \]

Síla \(\vec{F} \) tedy míří do poloroviny určené tečnou k trajektorii a bodem závěru kyvadla. Normálová složka zrychlení musí být totiž nenulová, neboť pohyb je křivočarý. V případě, že kulička kmitá, tj. \(-\varphi_0 \leq \varphi(t) \leq \varphi_0, \varphi_0 < 90^\circ\), jsou výjimkou krajní body (body obratu) trajektorie. V nich má kulička nulovou rychlost a tedy i nulové normálové zrychlení. Výsledná síla je v bodech obratu tečná k trajektorii.

Příklad 2.11. Pohyb tělesa s proměnnou hmotností.

Ve všech příkladech jsme dosud uvažovali pouze o částicích s konstantní hmotností. Druhý Newtonův zákon je však formulován obecněji, připojíme i možnost proměnné hmotnosti objektu. Jako typický příklad se uvádí pohyb nákladu, jejichž hmotnost klesá tím, že je oopuštění společně plynoucí páliva. Pro jiné příklady nemusíme chodit dáleky — stačí sčítat pohyb nafukovacího neavtounaného postředního balónku. Jako příklad by mohl posouzení třeba i nákladní automobilí, jemuž se z koryt vypne písek. Uvažujeme teď možnost, že hmotnost objektu se mění tak, že je známá rychlost hmotných elementů \(\Delta m \), které se od základního objektu proměnné hmotnosti \(m \) odpojují, resp. se k němu připojují, vzhledem k tomuto základnímu objektu. Označme ji \(\vec{u} \) a předpokládejme, že je konstantní (plyny oopuštěné nákladu se stáčejí relativní rychlostí). Je-li rychlost základního objektu vzhledem k dané inerciální vztažné soustavě \(\vec{v} \), je rychlost elementu \(\Delta m \) vůči téte vztažné soustavě \(\vec{v} + \vec{u} \). Hmotný element \(\Delta m \) a objekt \(m \) na sebe navázán plošně interněním sílami \(\vec{f} - \vec{f} \). Předpokládejme, že další síly na základě části tělesa nepůsobí. Změna hmotnosti základního objektu za dobu \(\Delta t \) je rovná odpovídajícímu impulsu síly \(\vec{f} \), změna hmotnosti elementu \(\Delta m \) impulsu síly \(-\vec{f} \).

\[(m + \Delta m)(\vec{v} + \Delta \vec{v}) - m \vec{v} = \vec{f} \Delta t, \quad -\Delta m(\vec{v} + \vec{u}) = -\vec{f} \Delta t.\]

Zanedbáme-li součin \(\Delta m \Delta \vec{v} \) a sečteme-li obě rovnice, dostaneme

\[m \Delta \vec{v} - \Delta m \vec{u} = 0 \iff \Delta \vec{v} \parallel \vec{u}. \]

Rychlost \(\vec{u} \) elementu \(\Delta m \) vzhledem k původnímu tělesu míří na opačnou stranu než se pohybuje původní těleso vzhledem k inerciální vztažné soustavě, je tedy \(\vec{v} = (v), \vec{u} = (-u) \).

Pak

\[\frac{\Delta m}{m} = \frac{dv}{u} \implies \ln m = \frac{v}{u} + C, \quad C = \text{konst.} \]

K určení integrační konstanty \(C \) potřebujeme opět jednu podmínku navíc. Předpokládáme-li, že pro \(v = v_0 \) je \(m = m_0 \), výjev \(C = \ln m_0 + \frac{v_0}{u} \). Řešení je tedy

\[\ln m = -\frac{v}{u} + \ln m_0 + \frac{v_0}{u} \implies m(v) = m_0 \exp \left(-\frac{v - v_0}{u} \right). \]

\[\star \]
2.4.2 Polhybové rovnice: Od zrychlení k trajektorii II

V předchozím odstavci jsme poprvé hovořili o polhybových rovnicích v souvislosti s matematickým krycím (příklad 2.10, vztah (2.21)). Polhybové rovnice jsou klíčovým pojmem dynamiky. Jsou v podstatě matematickým zápisem druhého Newtonova zákona a představují obecně soustavu rovnic pro neznámé funkce popisující trajektorii studované částice nebo soustavy částic. Uvažujme o částici, na kterou působí okolní objekty $1, 2, \ldots, K$ síly $\vec{F}_1, \vec{F}_2, \ldots, \vec{F}_K$. Jednotlivé síly jsou dány silovými zákony a obecně závisí, jak jsme již zjistili v odstavci 2.3.2, na poloze a rychlosti částice a také explcitně na čase. (Příkladem explcitní závislosti silového působení na čase může být statické elektrické pole mezi deskami kondenzátoru, kde se testovací nabitá částice pohybuje.) Označme-li $\vec{F} = \sum_{k=1}^{K} \vec{F}_k$ výslední výše uvedených sil, zapíšeme druhý Newtonův zákon takto

$$\frac{d\vec{p}}{dt} = \vec{F}(\vec{r}, \vec{v}, t), \quad \text{při konstantní hmotnosti} \quad m\vec{a} = \vec{F}(\vec{r}, \vec{v}, t).$$

Rychlost a zrychlení jsou však derivacemi funkce $\vec{r}(t)$, která představuje parametrické vyjádření trajektorie částice a kterou je třeba řešením problému zjistit. Omezme-li se na případ konstantní hmotnosti částice, dostaneme vektorové a ve složkách

$$m\vec{a}(t) = \vec{F}(\vec{r}(t), \dot{\vec{r}}(t), t),$$

$$m\dot{x}_x = F_x(x, y, z, \dot{x}, \dot{y}, \dot{z}, t),$$

$$m\dot{y}_y = F_y(x, y, z, \dot{x}, \dot{y}, \dot{z}, t),$$

$$m\dot{z}_z = F_z(x, y, z, \dot{x}, \dot{y}, \dot{z}, t).$$

Vztahy (2.23) představují soustavu tří diferenciálních rovnic pro neznámé funkce $x(t)$, $y(t)$ a $z(t)$. Neznámé funkce závisí na jedné proměnné t, nazýváme se proto obyčejné. Názov „diferenciální“ je dán skutečností, že kromě neznámých funkcí obsahuje soustavu i jejích derivace. Rovnice jsou druhého řádu, neboť nejvyšší derivace neznámých funkcí jsou druhého řádu. Další terminologie týkající se diferenciálních rovnic souvisí již s jejich konkrétním tvarem. Řešení konkrétních situací ukážeme na příkladech, aniž bychom se zabývali samotnou matematickou metodikou řešení diferenciálních rovnic. (Zájemcům o tuto problematiku poskytnuji učebnici matematické analýzy.)

Kapalna ve vaku malé kužičky o poloměru r padá ve vzduchu, který klade jejímu polohou odpor. Předpokládejme, že kužička-kapalna je volná, tj. s nuloval rychlostí, vyvstává ve výšce h nad povrchem Země. Vyšetříme její polohu jak pro případ, kdy je sílovým zákonem pro odporovou sílu Stokesův vzorec, tak pro případ Newtonova modelu (příklad 2.7, vztah (2.10)). Druhý Newtonův zákon má tvar

$$\sum \vec{F}_{\text{odpor}} = m\vec{a}.$$
\[x(t) = \frac{mg}{6 \pi \eta r} \left[t + \frac{1}{6 \pi \eta r} \exp \left(\frac{6 \pi \eta r}{m} \right) \right] - h + \frac{y(t)}{6 \pi \eta r}, \quad y(t) = 0, \quad z(t) = 0. \]

Další integrály zdaří řešit podmínky, kdy na vodní rovině je tedy
\[x(0) = \frac{mg}{6 \pi \eta r} \left[\frac{1}{6 \pi \eta r} \right] - h + \frac{y(0)}{6 \pi \eta r} = 0, \quad y(0) = 0. \]

Pobřežní podmínky pro vodní rovinu je
\[y(t) = P_i + Q_i, \quad z(t) = 0. \]

V případě stagnace modesu je vodní rovinu kladná, aby
\[m = mg - 6 \pi \eta r. \]

Integrál druhého třetího rovnice dostatečně
\[m = mg - 6 \pi \eta r, \quad m = 0, \quad m = 0. \]

Integrál druhého třetího rovnice
\[m = mg - 6 \pi \eta r, \quad m = 0. \]

Integrál druhého třetího rovnice
\[m = mg - 6 \pi \eta r, \quad m = 0. \]

Integrál druhého třetího rovnice
\[m = mg - 6 \pi \eta r, \quad m = 0. \]
Grafy závislosti polohy kapky \(x(t) \) a její rychlosti \(v_x(t) = \dot{x}(t) \) na čase jsou na Obr. 2.14-A a Obr. 2.14-B. (Vodorovná osa grafu, označená jako \(x \), je časová, na svislé osi se popisem \(y \) je poloha \(x(t) \), resp. rychlost \(v_x(t) \) kapky). Požadává kapky je 1 mm, hustota vody je \(g = 1000 \text{ kg m}^{-3} \), dynamická viskozita vzduchu při teplotě \(0^\circ \text{C} \) je \(\eta = 1,7 \cdot 10^{-5} \text{ Pa s} \). Graf je sestrojen v takovém rozsahu, aby bylo vidět, že se rychlost kapky pro \(t \to \infty \) blíží jistě limitní hodnotě. Ta vyplývá ze vztahu pro \(\dot{x}(t) \) a je rovna

\[
v_m = \frac{mg}{6\pi\eta r}.
\]

(2.24)

Názývá se mezní rychlost. Na druhé straně je vidět, že Stokesův model odporové síly není příliš realistický. Z grafu je vidět, že měla-li by se rychlost kapky blížit mezní hodnotě, museli bychom ji nechat padat z několikakilometrové výšky. Kapka by padala desítky sekund. Mezní rychlost pro zadané hodnoty činí asi \(v_m \approx 1,3 \cdot 10^2 \text{ m s}^{-1} \). Tato hodnota není v praxi realistická, je příliš vysoká.

Proto v další úvaze použijeme Newtonův model, který slije ůčinnější brzdení kapky díky závislosti odporové síly na kvadrátu rychlosti. Pohybové rovnice mají pro tento případ tvar

\[
m\ddot{x} = mg - \frac{1}{2}\pi r^2 C \rho \dot{x}^2, \quad m\dot{y} = 0, \quad m\ddot{z} = 0,
\]

de \(S = \pi r^2 \). Všimněme si první rovnice podrobněji. Tlaková síla je stále stejně velká, zatímco síla odporová roste se vzrůstající rychlostí, tentokrát kvadraticky na rozdíl od lineárního závěru v případě Stokesova modelu. V okamžiku, kdy se odporová síla vyrovná se silou tlakovej, je zrychlení nulové a těleso dosahuje mezní rychlosti

\[
v_m = \sqrt{\frac{2mg}{\pi r^2 C \rho}}.
\]

(2.25)

Pro počáteční podmínky \(y(0) = 0, \dot{y}(0) = 0, z(0) = 0 \) a \(\dot{z}(0) = 0 \) dostaneme z druhé a třetí pohybové rovnice \(y(t) = 0, \dot{z}(t) = 0 \). Můžeme se tedy zabývat jen první rovnicí. Označme v ní \(\xi = \dot{x} \). Počáteční podmínka pro \(\xi \) je pak \(\xi(0) = \dot{x}(0) = 0 \). Úpravou rovnice, rozkladem na parcíální známky a integrací postupně dostaneme

\[
\frac{2m\ddot{x}}{\pi r^2 C g \left(\frac{2mg}{\pi r^2 C g} - \xi^2 \right)} = 1 \quad \Rightarrow \quad \frac{\dot{\xi}^2}{g} \cdot \frac{1}{2v_m} \left(\frac{1}{v_m + \xi} + \frac{1}{v_m - \xi} \right) = 1,
\]

\[
\frac{v_m}{2g} \int \left(\frac{1}{v_m + \xi} + \frac{1}{v_m - \xi} \right) d\xi = t + C
\]

\[
\frac{v_m}{2g} \ln \left| \frac{v_m + \xi}{v_m - \xi} \right| = t + C
\]
2.4. NEWTONOVY ZÁKONY A POHYBOVÉ ROVNICE

Vzhledem k počáteční podmínce \(\xi(0) = 0 \) je integrační \(C \) konstanta nulová. Další úpravou dostaneme

\[
\frac{v_m + \xi}{v_m - \xi} = \exp\left(\frac{2gt}{v_m}\right) \quad \Rightarrow \quad \xi(t) = v_m \frac{\exp\left(\frac{2gt}{v_m}\right) - 1}{\exp\left(\frac{2gt}{v_m}\right) + 1} = v_m \tgh\left(\frac{gt}{v_m}\right).
\]

Především vidíme, že konstanta \(v_m \) skutečně představuje mezní rychlost, které však kapla reálně nikdy nedosáhne. Jde totiž o limitní hodnotu rychlosti pro \(t \to \infty \), \(\lim_{t \to \infty} \xi(t) = v_m \). Další integrační výrazu pro \(\xi = \dot{x} \) a s uvážením počáteční podmínky \(x(0) = -h \) získáme závislost polohy kaply na čase.

\[
x = \int v_m \tgh\left(\frac{gt}{v_m}\right) \, dt = v_m \int \frac{\sinh\left(\frac{gt}{v_m}\right)}{\cosh\left(\frac{gt}{v_m}\right)} \, dt = \frac{v_m^2}{g} \ln \left[\frac{\cosh\left(\frac{gt}{v_m}\right)}{\cosh\left(\frac{gt}{v_m}\right)} \right] - h.
\]

Grafy polohy a rychlosti kaply v závislosti na čase jsou na Obr. 2.14-c a Obr. 2.14-d. (Význam popisu je stejný jako na Obr. 2.14-a a Obr. 2.14-b.)

Obr. 2.14-a: K příkladu 2.12 — Stokesův model — poloha
Obr. 2.14-b: K příkladu 2.12 — Stokesův model — rychlost

Obr. 2.14-c: K příkladu 2.12 — Newtonův model — poloha
2.4. **NEWTONOVY ZÁKONY A POHYBOVÉ ROVNICE**

![Diagram](image)

OBR. 2.14-d: K PŘÍKLADU 2.12 — NEWTONŮV MODEL — RÝCHLOST

Pro pád kulové kapky o poloměru $r = 1$ mm ve vzduchu ($C = 0,5$, $g = 1,3$ kg m$^{-2}$ při teplotě 0°C a bez uvažení závislosti na výšce) je $v_m = 6,3$ m s$^{-1}$. Graf odpovídá pádu kapky z výšky $h = 20$ m. Rovněž tato situace není zcela realistická, kapka si totiž při pádu neuchová kulový tvar. Pokud bychom předpokládali, že zaujme tvar spíše aerodynamický, bude hodnota konstanty C rovna asi $3,7 \cdot 10^{-2}$. Pro tento případ je $v_m = 23,3$ m s$^{-1}$. Aproximací také představuje konstantní hustota vzduchu. Ve skutečnosti je závislá nejen na teplotě, ale i na výšce nad povrchem Země.

PŘÍKLAD 2.13.

Vračme se k pohybové rovnici matematického kyvadla (2.21). Označme v ní $\Omega_0 = \sqrt{g/l}$. Rovnice

$$\ddot{\varphi} + \Omega_0^2 \sin \varphi = 0$$

má sice analytické řešení, jeho vyjádření však není jednoduché. Rychlou představu o průběhu závislosti úhlové výchylky na čase můžeme snadno získat pro případ malých výchylek, při nichž lze $\sin \varphi$ nahradit přímo úhlem φ v obloukové můře.

Funkci $\sin \varphi$ lze totiž vyjádřit množinou řadou

$$\sin \varphi = \varphi - \frac{1}{3!} \varphi^3 + \frac{1}{5!} \varphi^5 - \cdots + \frac{(-1)^k}{(2k+1)!} \varphi^{2k+1} + \cdots$$
a nahradí ji pro malé hodnoty \(\varphi \) pozem prvním členem. Relativní chyba tohoto odhadu je pak určena podle prvního člena zanedlouháho „bytku“ řady a hodnoty \(\varphi \). Požadujeme-li například, aby relativní chyba odhadu byla menší než 0,01, dostaneme pro přípustný rozsah úhlových výčelkov v oboukové míře vztah

\[
\frac{\varphi^3}{6\varphi} < 0,01 \implies \varphi < \sqrt[3]{0.006} \approx 0,25.
\]

To odpovídá hodnotě asi 14°.

Řešíme tedy rovnici v aproximativním tvaru

\[
\ddot{\varphi} + \Omega_0^2 \varphi = 0.
\]

Jedná se o rovnici druhého řádu, **lineární** (neznamá funkce a její derivace vystupují v rovnici lineárně), s **konstantními koeficienty** (u neznámé funkce a jejích derivací nestejňují funkce, ale konstanty) a **homogenní** (na právě straně rovnice je nula). Všechna její reálná řešení (úhlová výchylka je reálnou funkcí času) jsou obsažena v zápisu

\[
\varphi(t) = a \cos \Omega_0 t + b \sin \Omega_0 t,
\]

(2.26)

a a b jsou libovolně reálné konstanty. Jejich hodnoty je třeba určit pomocí počátečních podmínek, \(\varphi(0) = -\varphi_0, \varphi(0) = \omega_0 \). Dosazením těchto hodnot do řešení rovnice pro \(t = 0 \) dostáváme

\[
\varphi_0 = a, \quad \omega_0 = b\Omega_0 \implies b = \frac{\omega_0}{\Omega_0}.
\]

Pro dané počáteční podmínky je řešením funkce

\[
\varphi(t) = \varphi_0 \cos \Omega_0 t + \frac{\omega_0}{\Omega_0} \sin \Omega_0 t.
\]

Řešení je lineární kombinací funkcí kosinus a sinus proměnné \(\Omega_0 t \). Je tedy periodickou funkcí s periodou \(T = 2\pi/\Omega_0 \). Dvě mezni situace nastanou pro \(\omega_0 = 0 \) a \(\varphi_0 = 0 \). Platí pro ně

\[
\varphi(t) = \varphi_0 \cos \Omega_0 t, \quad \varphi(t) = \frac{\omega_0}{\Omega_0} \sin \Omega_0 t.
\]

Pohyb kyvadla je popsán „čistou“ funkcí kosinus, resp. sinus.

Začněme se na řešení rovnice podrobněji. Úprava na tvar \(\ddot{\varphi} = -\Omega_0^2 \varphi \) ukazuje, že řešením je funkce, jejíž druhá derivace je až na vynásobení konstantou první derivace. Tuto vlastnost mají goniometrické funkce sinus a kosinus a funkce exponenciální. Předpokládáme řešení v exponenciálním tvaru \(\varphi = \exp \lambda t \), koeeficient \(\lambda \) hledáme jeho dosazením do rovnice:

\[
\lambda^2 \exp \lambda t + \Omega_0^2 \exp \lambda t = 0 \implies \lambda^2 + \Omega_0^2 = 0.
\]

Získali jsme algebraickou rovnici pro \(\lambda \), tzv. **charakteristickou rovnici**. Hodnoty

\[
\lambda = \pm i\Omega_0.
\]
2.4. NEWTONOVO ZÁKONY A POHYBOVÉ ROVNICE

jou charakteristické kořeny diferenciální rovnice $\dot{\varphi} + \Omega_0^2 \varphi = 0$. Základem řešení jsem funkce

$$
\varphi_1(t) = \exp(i\Omega t), \quad \varphi_2(t) = \exp(-i\Omega t),
$$

které tvoří fundamentální systém řešení dané diferenciální rovnice. Rovnici vyhovuje také každá jejich lineární kombinace

$$
\varphi(t) = C_1 \varphi_1(t) + C_2 \varphi_2(t) = C_1 \exp(i\Omega t) + C_2 \exp(-i\Omega t), \quad (2.27)
$$

kde C_1 a C_2 jsou libovolně obecné komplexní konstanty. Podobně jako v předchozích úložích mají význam integračních konstant. Vztah (2.27) obsahuje všechna řešení rovnice. Fyzikální smysl však mají v naši úloze pouze reálné funkce $\varphi(t)$, tj. takové, které splňují požadavek $\varphi(t) = \varphi^*(t)$. Hlavněklo značí operaci komplexního sdružení. Dostáváme omezení pro velikost konstant

$$
C_1 \exp(i\Omega t) + C_2 \exp(-i\Omega t) = C_1^* \exp(-i\Omega t) + C_2^* \exp(i\Omega t) \implies (C_1 - C_2^*) \exp(2i\Omega t) = (C_1^* - C_2) .
$$

Podotkněme, že dělení výrazů exponentních funkci je „povolené“ pro všechna t, neboť exponentní funkce je vždy nemislová. Předchozí rovnice musí platit pro libovolnou t. Vzhledem k tomu, že na její levé straně je nekonstantní funkce a na pravé konstanta, je možné ji vyhořit pouze pro $C_2 = C_2^*$. Zapíšeme-li C_1 ve tvaru $A + iB$, kde $A, B \in \mathbb{R}$, je $C_2 = A - iB$. Použijeme Eulerovo vztah $\exp(i\alpha) = \cos \alpha + i\sin \alpha$. Pro $\varphi(t)$ dostaneme

$$
\varphi(t) = 2A \cos \Omega t - 2B \sin \Omega t \implies \varphi(t) = a \cos \Omega t + b \sin \Omega t, \quad a = 2A, \quad b = -2B .
$$

Výsledek se shoduje s (2.26).

Podrobnější návody k matematickým metodám řešení diferenciálních rovnic lze najít v běžné matematické literatuře.

A ještě jedna zajímavost: Periodu matematického kyvadla $T = 2\pi \sqrt{l/g}$ jsem získal řešením jeho polohové rovnice. To bylo použité pracné. Charakter vztahu pro periodu však můžeme získat téměř bez práce, použitím tzv. rozměrové analýzy. Je jasné, že perioda musí záviset pouze na těžovém zrychlení, hmotnostní množství kulíky a délce závěsu. Předpokládejme jen v hodinově, tvaru

$$
T = \frac{g^{1/2}}{m} n ,
$$

kde α, β a γ jsou zatím neznámé exponenty. Musí však být takové, aby výsledný rozměr vyšel v sekundách. Dostáváme tak požadavek

$$
\alpha = \beta + \gamma = -2\alpha = 1, \quad \alpha = -1/2, \quad \beta = 1/2, \gamma = 0 .
$$

Pro periodu tedy vychází $T \sim \sqrt{g}$. Rozměrová analýza nám samozřejmě neumožní určit konstantu $2T$. Pokud bychom touto metodou chetli zjistit tvar vztahu pro periodu oběžku tzv. kyvadlového kyvadla, vykonávajícího rovnoměrný pohyb po kružnici o poloměru $r = \sin \theta$ ve vodorovné rovině, kde θ je úhel mezi vláknem závěsu a svislým směrem, dostaneme samozřejmě týž typ její závislosti na l a g. Přesný vztah však má tvar $T = 2\pi \sqrt{g} / \cos \theta$, konstantu $2\pi \sqrt{g}$
rozumětelnou nalézají opět nezjistitelná. Rozumětelná analýza je užitečná pro orientační zjištění typu závislosti dané veličiny a veličinách ostatních, není však zcela dokonalá.

Částice o hmotnosti m nese náboj q a pohybuje se v homogenním časově nepřeměnném magnetickém poli o indukci \(\vec{B}(\vec{r}, t) = \vec{B} = \text{konst.} \). V čase \(t = 0 \) prochází počátkem soustavy souřadnice rychlostí \(\vec{v}_0 \). Řešením polýbově rovnice zjistíme její trajektorii. Uvážíme-li pouze vliv magnetického pole a všechny ostatní vlivy zanedbáme, má druhý Newtonův zákon s použitím silového zákona (2.7) tvar

\[
m\ddot{\vec{a}} = q(\vec{v} \times \vec{B}).
\]

Zvolíme pravotočivou kartézskou soustavu souřadnic tak, aby osa z směřovala souhlasně s vektorem \(\vec{B} \) a osy \(x \) a \(y \) tak, aby vektor \(\vec{v}_0 \) ležel v souřadnicové rovině \(xy \) (Obr. 2.15). Pak \(\vec{v} = (v_x, v_y, v_z) = (\dot{x}, \dot{y}, \dot{z}), \vec{B} = (0, 0, B), \vec{v}_0 = (0, v_{0y}, v_{0z}) = (0, v_0 \cos \alpha, v_0 \sin \alpha). \)

![Obr. 2.15: Nabité částice v magnetickém poli](image)

Ve složkách rozepíšeme druhý Newtonův zákon takto:

\[
\begin{align*}
m\ddot{x} &= q(v_y B_z - v_z B_y) = q\dot{y} B, \\
m\ddot{y} &= q(v_z B_x - v_x B_z) = -q\dot{x} B, \\
m\ddot{z} &= q(v_x B_y - v_y B_x) = 0.
\end{align*}
\]
2.4. NEWTONOVY ZÁKONY A POHYBOVÉ ROVNICE

Řešením třetí rovnice je funkce \(z(t) = A_z t + B_z \), z počátečních podmínek \(z(0) = 0 \) a \(v_z(0) = \dot{z}(0) = v_{0z} = v_0 \sin \alpha \) zjistíme integrační konstanty \(A_z = v_0 \sin \alpha \), \(B_z = 0 \). Řešení zbývajících rovin je možné provést různými způsoby. Než se do některého z nich pustíme, všimněme si jedné zajímavosti: Vynásobíme-li první rovnici soustavy (2.28) \(\dot{x} \), druhou \(\dot{y} \) a sečteme, dostaneme

\[
(x\ddot{x} + y\ddot{y}) = 0 \implies \frac{d}{dt}(v_x^2 + v_y^2) = 0.
\]

Přemět rychlostí do rovin \(xy \) je tedy konstantní. Protože i \(v_z = A_z = v_0 \sin \alpha \) je konstantní, je \(v = \sqrt{v_x^2 + v_y^2 + v_z^2} = v_0 = \) konst. Pohyb částice v magnetickém poli je tedy rovnoramenný. Všimněte si, že tento výsledek by byl stejný, i kdyby magnetické pole bylo časově proměnné a nehomogenní, tj. indukce magnetického pole závisela na poloze a na čase.

Pro řešení rovnice zvolíme konstrukti formální, ale nejrychlejší postup. Druhou rovnici soustavy (2.28) vynásobíme imaginární jednotkou (i) a přičteme k první rovnici. Dále označíme \(\xi = \dot{x} + i\dot{y} \). Pak

\[
\dot{\xi} = -i\omega \xi, \quad \omega = \frac{qB}{m}.
\]

Dosazením se snadno převědějte, že této rovnici vyhovuje všechny funkce tvaru

\[
\xi = K \exp(-i\omega t).
\]

\(K \) je libovolná komplexní konstanta.

POZNÁMKA: Pro derivování komplexních funkcí platí stejná pravidla jako u funkcí reálných, takže \(\dot{\xi} = -i\omega \exp(-i\omega t) \). Z teorie diferenciálních rovnic plyne, že jiná řešení už rovnice nemá.

Konstantu \(K \) určíme z počáteční podmínek pro rychlost: \(\xi(0) = K = \dot{x}(0) + i\dot{y}(0) = iv_0 \cos \alpha \). Pak, po rozdělení \(\dot{\xi} \) na reálnou a imaginární část \(\dot{x} = v_x \) a \(\dot{y} = v_y \),

\[
\xi(t) = iv_0 \cos \omega t \exp(-i\omega t) \implies v_x(t) = v_0 \cos \alpha \sin \omega t, \quad v_y(t) = v_0 \cos \alpha \cos \omega t.
\]

Další integrační využití počátečních podmínek \(x(0) = 0, y(0) = 0 \), již získáme funkce \(x(t) \) a \(y(t) \), které spojuje se \(z(t) \) tvoří parametrické vyjádření trajektorie.

\[
x(t) = \int v_0 \cos \alpha \sin \omega t \, dt = \frac{v_0 \cos \alpha}{\omega} (1 - \cos \omega t),
\]

\[
y(t) = \int v_0 \cos \alpha \cos \omega t \, dt = \frac{v_0 \cos \alpha}{\omega} \sin \omega t,
\]

\[
z(t) = v_0 t \sin \alpha.
\]

Uvažme dva speciální případy, kdy je počáteční rychlost kolmá k magnetické indukci (\(\alpha = 0 \)), resp. je s ní rovnoběžná (\(\alpha = \pi/2 \)). Řešení úlohy má pak tvar
\[x(t) = \frac{v_0}{\omega} (1 - \cos \omega t), \quad y(t) = \frac{v_0}{\omega} \sin \omega t, \quad z(t) = 0, \quad \text{resp.} \]
\[x(t) = 0, \quad y(t) = 0, \quad z(t) = v_0 t. \]

Obr. 2.16-a: Pozitron v magnetickém poli, \(\vec{v}_0 \perp \vec{B} \)

Obr. 2.16-b: Elektron v magnetickém poli, \(\vec{v}_0 \perp \vec{B} \)
2.4. NEWTONOVO ZÁKONY A POHYBOVÉ ROVNICE

V případě, že částice vletí do magnetického pole kolmo k indukci (Obr. 2.16), je její trajectorii kružnice

\[(x - \frac{v_0}{\omega})^2 + y^2 = \left(\frac{v_0}{\omega}\right)^2\]

v rovině xy, se středem v bodě \(S = (v_0/\omega, 0, 0) \), a poloměrem \(R = v_0/\omega \). Částice po ní oběhá rovnoměrně s kruhovou frekvencí \(\omega = qB/m \), zvanou **cyclotronová frekvence**. Pro elektron v magnetickém poli o indukci 0,1 T je tato frekvence zhruba \(1,8 \cdot 10^{10} \text{s}^{-1} \), pro proton \(9,6 \cdot 10^{8} \text{s}^{-1} \).

Grafy na Obr. 2.16-a a Obr. 2.16-b jsou nakresleny pro částice s kladným, resp. záporným elementárním nábojem \(\pm e \pm 1,6 \cdot 10^{-19} \text{C} \) a hmotností \(m = \pm 0,91 \cdot 10^{-30} \text{kg} \) (pozitron, resp. elektron) s počáteční rychlostí \(\vec{v}_0 = (0, v_0, 0) \), \(v_0 = 1,9 \cdot 10^7 \text{m s}^{-1} \) v magnetickém poli \(\vec{B} = (0, 0, B) \), \(B = 0,1 \text{T} \). Počáteční rychlost odpovídá urychlení napětím 1 kV. Pozitron oběhá v záporném smyslu (po směru hodinových ručiček), elektron v kladném smyslu.

Příklad 2.15. Částice v elektrickém a magnetickém poli.

Výřešte ještě posloupně složitější úlohu, pokud nabité částice v časově neproměnném a homogenním elektrickém i magnetickém poli. Intenzitu elektrického pole označme \(\vec{E} \), indukce magnetického pole \(\vec{B} \). Oba tyto vektory jsou konstantní. Soustavu souřadnic zvolíme tak, aby vektor \(\vec{B} \) směroval opět podél osy \(z \) a vektor \(\vec{E} \) ležel v souřadnicové rovině \(yz \). Jejich složky jsou pak \(\vec{B} = (0, 0, B) \) a \(\vec{E} = (0, E \cos \alpha, E \sin \alpha) \).

\[\text{Obr. 2.17: Nabíz částice v elektrickém a magnetickém poli,}\]

Počáteční podmínky jsou \(\vec{r}(0) = (0, 0, 0) \), \(\vec{v}(0) = (v_{0x}, v_{0y}, v_{0z}) \) (viz Obr. 2.17). Druhý Newtonův zákon
\[m\ddot{a} = q\vec{E} + q(\vec{v} \times \vec{B}) \]

přepíšeme do složek:

\[
\begin{align*}
\ddot{m}x &= q\dot{y}B, \\
\ddot{m}y &= qE\cos\alpha - q\dot{z}B, \\
\ddot{m}z &= qE\sin\alpha.
\end{align*}
\] \hspace{1cm} \text{(2.29)}

Integraci třetí rovnice a určením počátečních podmínek \(z(0) = 0 \) a \(\dot{z}(0) = v_{0y} \) dostaneme \(z(t) = \frac{qE}{2m}t^2\sin\alpha + v_{0y}t \). Pro řešení soustavy prvních dvou rovnic použijeme tentokrát jiný přístup, abychom poznali i jiné matematické postupy. Vyjádříme z první rovnice \(\ddot{y} \), zderžíme a dosadíme do druhé rovnice. Přitom stejně jako v příkladu 2.14 označme \(\omega = qB/m \). Tato úprava vede k rovnici

\[
x(3) + \omega^2 \left(\dot{x} - \frac{E}{B}\cos\alpha \right) = 0 \quad \Rightarrow \quad \dot{x} + \omega^2 x = 0,
\]

kde jsem označil \(\xi = \dot{x} - \frac{E}{B}\cos\alpha \). Obecně řešení této rovnice však již známe. Je totiž formálně shodná s polybovou rovnicí matematického kyvadla s malými výčlony. Je tedy \(x(t) = a\cos\omega t + b\sin\omega t \Rightarrow \) \(\dot{x}(t) = E\cos\alpha + a\cos\omega t + b\sin\omega t \)

kde a b jsou libovolné reálné konstanty (integrální konstanty). Pro vyjádření \(\dot{y} \) jsem přitom použil druhé rovnice ze soustavy (2.29). Uplatněním počátečních podmínek pro rychlost, \(\dot{x}(0) = v_{0x}, \dot{y}(0) = v_{0y} \), dostaneme \(a = v_{0x} - \frac{E}{B}\cos\alpha \) a \(b = v_{0y} \), tj. celkově pro rychlost

\[
\begin{align*}
\dot{x} &= \frac{E}{B}\cos\alpha + \left(v_{0x} - \frac{E}{B}\cos\alpha \right)\cos\omega t + v_{0y}\sin\omega t, \\
\dot{y} &= -\left(v_{0x} - \frac{E}{B}\sin\alpha \right)\cos\omega t + v_{0y}\sin\omega t, \\
\dot{z} &= \frac{qEt}{m}\sin\alpha + v_{0z},
\end{align*}
\]

Další integraci a uplatněním počáteční podmínek pro polohu získáme parametrické rovnice trajektorie částice. Jejich výsledný tvar je

\[
\begin{align*}
x(t) &= \frac{Et}{B}\cos\alpha + \frac{1}{\omega} \left(v_{0x} - \frac{E}{B}\cos\alpha \right)\sin\omega t + \frac{v_{0y}}{\omega} \left(1 - \cos\omega t \right), \\
y(t) &= -\frac{1}{\omega} \left(v_{0x} - \frac{E}{B}\cos\alpha \right) \left(1 - \cos\omega t \right) + \frac{v_{0y}}{\omega}\sin\omega t, \\
z(t) &= \frac{qEt^2}{2m}\sin\alpha + v_{0z}t.
\end{align*}
\] \hspace{1cm} \text{(2.30)}

Parametrické rovnice trajektorie se zjednoduší za speciálních podmínek. Pro případ, kdy jsou elektrická a magnetická pole rovnoběžná, je \(\alpha = \pi/2 \). Dalším zjednodušením je volba počáteční rychlosti. Zvolíme-li jí kolmou k oběma polím, například \(v_0 = (0, v_0, 0) \), mají parametrické rovnice trajektorie tvar

\[
\begin{align*}
x(t) &= \frac{v_0}{\omega} \left(1 - \cos\omega t \right), \\
y(t) &= \frac{v_0}{\omega} \sin\omega t, \\
z(t) &= \frac{qE}{2m}t^2.
\end{align*}
\]
Tato trajektorie je znázorněna v prvním grafu v Obr. 2.18 pro proton \(m = 1,67 \cdot 10^{-27} \text{ kg} \), \(q = +1,60 \cdot 10^{-19} \text{ C} \), jehož počáteční rychlost odpovídá urychlení napětí 10 kV a její velikost tedy rovna \(v_0 = 1,38 \cdot 10^6 \text{ m s}^{-1} \). Indukce magnetického pole je \(B = 0,1 \text{ T} \), intenzita pole elektrického je \(E = 5 \cdot 10^4 \text{ V m}^{-1} \). Cyklotronová frekvence je \(9,58 \cdot 10^6 \text{ s}^{-1} \).

\textbf{Obr. 2.18-a:} Trajektorie nabité částice v magnetickém poli
Obr. 2.18-b: Trajektórie nabité částice v elektrickém a magnetickém poli

Obr. 2.18-c: Trajektórie nabité částice v elektrickém a magnetickém poli
2.4. NEWTONOVO ZÁKONY A POHYBOVÉ ROVNICE

Daňš grafy na Obr. 2.18 odpovídají stejným hodnotám jako první graf, avšak postupně situacím:

- \(\vec{E} \perp \vec{B} \), tj. \(\alpha = 0 \), (tzv. zkřížené elektrické a magnetické pole), \(\vec{v}_0 = (0, v_0, 0) \), prosto-rnově znázorněná roviná trajektorie,

- týž případ jako předchozí, trajektorie je však znázorněna v rovině \(xy \), v níž leží,

- \(\vec{E} \perp \vec{B} \), tj. \(\alpha = 0 \), \(\vec{v}_0 = (0, 0, v_0) \).

Příklad 2.16 Thumené a vynucené kmity.

Daňším příkladem tohoto odstavce je řešení problému thumených kmitů a vynu-cených kmitů. Základním modelem je harmonický oscilátor (tělisko na pružině z příkladu 2.6), jehož pohyb je thumen odporovou silou závislou lineárně na rychlosti \(F_\gamma = -2\gamma v \), \(\gamma \) je kladná konstanta, popřípadě „podporování“ periodicky proměnnou vynucující silou. Konstanta \(\gamma/m \) se nazývá \textit{koeficient útlumu}. Pohybové rovnice pro tyto případy jsou

\[
m\ddot{x} + 2\gamma \dot{x} + kx = 0, \tag{2.31}
\]

\[
m\ddot{x} + 2\gamma \dot{x} + kx = F_\gamma \sin \Omega t. \tag{2.32}
\]

Nejprve řešme rovnici (2.31). Její charakteristická rovnice má tvar

\[
m\lambda^2 + 2\gamma \lambda + k = 0
\]
a její kořeny jsou
\[\lambda_{1,2} = \frac{1}{m} \left(-\gamma \pm \sqrt{\gamma^2 - km} \right). \]

Nyní rozlišíme tři případy. První z nich nastává, jestliže \(\gamma^2 > km \). Kořeny charakteristické rovnice jsou reálné a obecné řešení je popsáno vztahem
\[x(t) = e^{-\frac{\lambda t}{2m}} \left[Ce^{\sqrt{(\frac{\lambda}{m})^2 - \frac{k}{m}} t} + De^{-\sqrt{(\frac{\lambda}{m})^2 - \frac{k}{m}} t} \right]. \]

Dochází k tzv. *nadkritickému útlumu*, výchylka tělesa se zmenšuje k nule, těleso se bez kníjání vraci do rovnovážné poloohy. (Na základě rozboru průběhu funkce \(x(t) \) sami sestrojte její graf a zejména procházejte jeho chování pro \(t \rightarrow \infty \). Situaci znázorňuje Obr. 2.19. Je sestrojen pro počáteční podmínky \(x(0) = 0,00 \text{m}, \dot{x}(0) = 1,00 \text{m.s}^{-1} \), *vlastní kruhovou frekvenci* \(\omega_0 = \sqrt{\frac{k}{m}} = 10,0 \text{s}^{-1} \) a tři různé hodnoty koeficientu útlumu, pro které podíl \(\frac{\omega}{\omega_0} \) nabývá hodnot 16, 0 \text{s}^{-1}, 13, 0 \text{s}^{-1}, 10, 7 \text{s}^{-1}. Taková situace by mohla odpovídat třeba mechanickému oscilátoru o hmotnosti \(m = 1 \text{kg} \) na pružině o tuhosti \(k = 100 \text{N m}^{-1} \), který by knítal v nějaké vhodné kapalině.

![Obr. 2.19: Nadkritický útlum](image)

V případě, \(\omega \gamma = km \), má charakteristická rovnice jeden dvojnásobný reálný kořen a možné časové závislosti výchylky jsou popsány obecným řešením
\[x(t) = (Ct + D)e^{-\frac{m}{m}}. \]
2.4. Newtonovy zákony a pohybové rovnice

Těleso se opět vráci do rovnovážné polohy, jak je vidět na Obr. 2.20. V tomto případě hovoříme o tzv. kritickém útlumu, který představuje jakési „rozhraní“ mezi útlumem nadkritickým, o kterém jsme již mluvili, a podkritickým, o kterém bude šeť za chvíli.

Obr. 2.20: Kritický útlum — černá křivka

Do Obr. 2.20 jsou také znovu zakresleny křivky nadkritického útlumu z Obr. 2.19. Je vidět, že kritický útlum skutečně představuje mezí případ. Uvědomme si ještě jednu důležitou skutečnost, kterou ukazují grafy. Poloha tělesa se bude sice k rovnovážné poloze velmi rychle blížit, ke skutečnému „návratu“ tělesa do rovnovážné polohy však fakticky nedojde nikdy (resp. dojde k němu „v nekonečném čase“). Z praxe však víme, že jakkoli málo tlumené knyty nakonec ustanou. Jak je tedy možné, že nám to nevyházi ani při silnějším a silnějším tlumení? Přičina je v příliš zjednodušeném modelu tlumení. Ve skutečnosti závisí odporová síla na rychlosti tělesa složitějši než lineárně. Kdybychom však použili nelineární model, nebyla by pohybové rovnice oscilátoru rovnice lineární a zase bychom měli problém s řešením. Opět se tedy přesvědčujeme, že vhodná volba fyzikálního modelu je vždy jistým kompromisem.

Poslední případ nastává, jestliže jsou koeficienty charakteristické rovnice komplexní, tj. $\gamma^2 < km$. Obecné řešení je tvaru

$$x(t) = e^{-\frac{\gamma t}{2}} \left[P \cos(\omega t) + Q \sin(\omega t) \right],$$

where ω is the angular frequency of vibrations.
kde $\omega = \sqrt{\frac{k}{m}} - \left(\frac{\gamma}{m}\right)^2$. Jedná se o podkritický útlum, tělsko kmitá s kruhovou frekvencí ω a amplituda výchylky klesá exponentiálně s časem. Ukazuje to Obr. 2.21. V první části obrázku je řešení polubové rovnice pro stejné počáteční podmínky, jaké jsme použili pro nadkritický a kritický útlum. Také vlastní kruhovou frekvencí jsme zdobili stejnou. Jednotlivé grafy jsou zakresleny pro různé hodnoty podílu $\frac{\gamma}{m}$, konkrétně 0, 5 s$^{-1}$, 2, 0 s$^{-1}$, 5, 0 s$^{-1}$ a 7, 0 s$^{-1}$. Pro názornost je zakreslena i křivka odpovídající kritickému útlumu, stejná jako na Obr. 2.20. Je dobře vidět, jak se kmity se vzrostující hodnotou $\frac{\gamma}{m}$ blíží kritickému útlumu, naopak při poklesu $\frac{\gamma}{m}$ se blíží netlumeným kmity (přerušovaná křivka).

Obr. 2.21-a: Podkritický útlum — tečkovaně netlumené kmity
Tyto kmity představují polhy *netlumeného harmonického oscilátoru*, jehož koeficient útlumu je nulový. Oscilátor kmity s vlastní kruhovou frekvencí \(\omega_0 = \sqrt{\frac{k}{m}} \) a jeho amplituda se s časem nemění. V druhé části obr. 2.21-b je graf kmity při podkritickém útlumu s hodnotou \(\gamma = 2,0 \) s\(^{-1}\). Jste znažené i „exponenciální obálky“ \(\pm \exp (-2t) \). Zkusite spočítat souřadnice bodů dotyku obálk s křivkou popisující kmity.

Diferenciální rovnice pro vymenené kmity (2.32) se od rovnice, která jsme zatím řešili, liší nenulovou pravou stranou. Jedná se o rovnici *nehomogenní*, zatímco rovnice s nulovou pravou stranou je *homogenní*. Obecné řešení \(x(t) \) nehomogenní rovnice získáme tak, že k obecnému řešení \(x_h(t) \) odpovídající homogenní rovnice, tj. té, kterou získáme anulováním pravé strany, přičteme libovolné (partikulární) řešení \(x_p(t) \) nehomogenní rovnice. Odporovávající homogenní rovnice je ovšem polhou rovnici tlumeného oscilátoru bez buzení a její řešení již známe. Předpokládejme, že jde o případ podkritického útlumu. Řešení naší úlohy má tedy tvar

\[
x(t) = \exp \left(-\frac{\gamma}{m} t\right) \left(a \cos \omega t + b \sin \omega t\right) + x_p(t), \quad \omega = \sqrt{\frac{\omega_0^2}{\gamma} - \left(\frac{\gamma}{m}\right)^2}.
\]

Zbývá tedy ještě určit jakékolik řešení nehomogenní rovnice. Hledejme \(x_p(t) \) v zobecněném tvaru pravé strany, tj. \(x_p(t) = P \cos \Omega t + Q \sin \Omega t \). Neznámé konstanty \(P \) a \(Q \) je třeba určit tak, aby funkce \(x_p(t) \) vyhovovala rovnici (2.32). Dosazením a úpravou dostaneme

Obr. 2.21-b: Tlumené kmity s obálkou
\[x_p(t) = \frac{F_0/m}{\sqrt{(\omega_0^2 - \Omega^2) + \left(\frac{4 \Delta \Omega}{m}\right)^2}} \sin(\Omega t + \phi), \quad \tan \phi = \frac{2 \Omega (\gamma/m)}{\omega_0^2 - \Omega^2}. \]

Pro velká \(t \) dochází k utlumení vlastních kmitů oscilátoru, který pak kmitá již s vymucující frekvencí \(\Omega \).

Příklad 2.17 Trhání provázků.

V základních přednáškách z mechaniky se s oblibou ukazuje demonstrační experiment, který se většinou interpretuje jako pokus dokumentující setrvačnost těles. Je uspědlán podle Obr. 2.22 takto: V tihovém poli Země (tihové zrychlení \(g \)) je na provázku zavěšeno poměrně těžké těleso o hmotnosti \(M \). Na jeho spodku visí další provázek, který je volný. Oba provázky jsou stejné kvality (zejména klubáž) a mají zanedbatelnou hmotnost. Pokud za dolní provázek tahneme zvětšující se sílou „pomalu“, pak při určitém tahu praskne horní provázek. Pokud dostatečně velkou sílou dolní provázek „trhnete“, praskne dolní provázek. Kvalitativně se výsledky tohoto pokusu vysvětlují tak, že jsou způsobeny setrvačností tělesa — „těleso se brání tomu, aby se dalo do polohy, resp. snaží se zůstat v klidu“. Toto vysvětlení je ovšem velice hrubé, resp. nedostatečné, či dokonce nesprávné říci zvádějící. Pokud by totiž těleso při silovém působení na dolní provázek zůstávalo v klidu, musela by tahová síla \(F_h \) horního provázku kompenzovat společný účinek tihové síly \(M \tilde{g} \) a tahové síly \(F_d \) dolního provázku, tj. \(F_h = Mg + F_d \). Platilo by tedy \(F_h > F_d \) a praskl by vždy horní provázek. Známe-li Newtonovy zákony, můžeme chování soustavy přesně popsat.

Všimněme si nejprve, co se děje s provázkem. Ve skutečnosti není těžký, ale chová se jako pružina. Zavěšením tělesa nebo působením jiné síly se jeho délka mění. Označme tedy délky horního a dolního provázku v nenapájeném stavu jako \(l_h \) a \(l_d \). Pružné vlastnosti provázku popiseme pomocí tahové síly, která vznikne v provázku při jeho prodloužení (nebo zkrácení) o \(\Delta \). Budeme předpokládat, že tato síla se řídí Hookeovým zákonem. Její velikost je tedy přímo úměrná relativní změně délky provázku a síla může vždy proti změně délky. Platí tedy

\[\vec{\Phi} = -k \frac{\Delta \ell}{\ell} \vec{x}^0, \]

kde \(k \) je konstanta (v newtonách) a \(\vec{x}^0 \) je jednotkový vektor ve směru, v němž se provázek prodlužuje. V případě, že se provázek prodluží, je \(\Delta \ell > 0 \) a pružná síla je souhlasné rovnoběžná s vektořem \(\vec{x}^0 \), při zkrácení provázku, kdy je \(\Delta \ell < 0 \), je síla s vektořem \(\vec{x}^0 \) rovnoběžná nesouhlasné. Zvolíme osu \(x \) tak, že vektor \(\vec{x}^0 \) bude určovat její kladnou orientaci. Počátek osy \(x \) umístíme nakonec volně visícího horního provázku, tj. v situaci, kdy jsme na něj již nezavěšili těleso. Volba je zřejmá z Obr. 2.22.
OBR. 2.22: Trhání provázku — uspořádání experimentu

V první části obrázku je zakreslen pouze volně visící horní provázek a volba osy \(x \) včetně volby jejího počátku. Druhá část znázorňuje těleso zavěšené na horním provázku v klidu, dolní provázek je nezatížen. V této situaci je působení těžové síly \(M\ddot{g} \) kompenzováno působením tahové síly horního provázku \((\vec{F}_h)_0 = -k \frac{\ddot{x}}{m} \). Těleso je ve statické rovnovážné poloze \(x_r \). Platí

\[
M\ddot{g} + (\vec{F}_h)_0 = 0 \implies x_r = \frac{MgL_{h}}{k}.
\]

Ve třetí části obrázku je zachycena obecná poloha tělesa \(x(t) \) za předpokladu, že na konec dolního provázku působí další síla \(\vec{F}_d \). Pro její časový průběh musíme zvolit vhodný model, který jednak bude dost jednoduchý, abychom mohli snadno vypočítat pohyb tělesa, jednak bude umožňovat vystihnut „pomalý tah“, nebo „trhnutí“. Zvolme představu, že dolní konec dolního provázku se pohybuje rovnoměrně zrychleně se zrychlením \(\ddot{a}_0 = a_0 \dot{x}_0 \). Ještě než sestavíme pohybovou rovnici tělesa, uvědomíme si, jaké jsou okamžitě délky provázků, její těleso v obecné poloze \(x \). Budeme to potřebovat při vyjádření tahových sil provázků. Délka horního provázku je jednoduše \((x + l_h)\), jeho prodloužení je tedy přímo rovno souřadnici \(x \), \(\Delta l_h = x \). Souřadnice dolního konce
doňho provázku v situaci, kdy je právě ještě nezatížený, tj. v okamžiku $t = 0$, je $(x_r + l_d)$. V okamžiku t je již doň konec doňho provázku posunut o $\frac{1}{2}a_0 t^2$, má tedy souřadnicí $(x_r + l_d + \frac{1}{2}a_0 t^2)$. Horní konec doňho provázku má však v tomto okamžiku souřadnicí x. Délka doňho provázku v okamžiku t je rovna rozdílu souřadnic jeho doňho a horního konce, tj. $x_r + l_d + \frac{1}{2}a_0 t^2 - x$. Prodloužení doňho provázku je tedy $\Delta l_d = x_r - x + \frac{1}{2}a_0 t^2$. A nyní již sestavme polohovou rovnici tělesa. Kromě tihové síly $M\ddot{g}$ na ně působí tihové síly horního doňho provázku, \ddot{F}_h a \ddot{F}_d. Označme-li zrychlení tělesa jako \ddot{a}, můžeme zapsat druhý Newtonův zákon ve tvaru

$$M\ddot{a} = M\ddot{g} + \ddot{F}_h + \ddot{F}_d.$$

Pro tihové síly provázku máme

$$\ddot{F}_h = -\frac{k}{l_h} x \dot{x}^0, \quad \ddot{F}_d = \frac{k}{l_d} \left(x_r - x + \frac{1}{2}a_0 t^2\right) \dot{x}^0.$$

Pohyb se podle předpokladu odehrává pouze ve směru osy x, takže můžeme psát

$$M\ddot{x} = Mg - \frac{k}{l_h} x + \frac{k}{l_d} \left(x_r - x + \frac{1}{2}a_0 t^2\right).$$

Další úpravou dostaneme diferenciální rovnici druhého řádu

$$\ddot{x} + \frac{k}{M} \left(\frac{1}{l_h} + \frac{1}{l_d}\right) x = g \left(1 + \frac{l_h}{l_d}\right) + \frac{k a_0}{2 M l_d} t^2.$$

Tato rovnice je nehomogenní, s pravou stranou tvaru polynomu druhého stupně

$$f(t) = g \left(1 + \frac{l_h}{l_d}\right) + \frac{k a_0}{2 M l_d} t^2.$$

Pro kompletní zadaní počáteční úlohy a získání konkrétní časové závislosti polohy tělesa musíme ještě připojit počáteční podmínky. V okamžiku $t = 0$ je podle našeho dřívějšího předpokladu těleso v rovnovážném poloze a má nulovou rychlost. Počáteční podmínky tedy jsou $x(0) = x_r = M\ddot{g} \frac{l_d}{k}$ a $\dot{x}(0) = 0$. Obecné řešení homogenní rovnice (s levou stranou shodnou s naší rovnicí a s nulou na pravé straně) je

$$x_h(t) = a \cos \omega t + b \sin \omega t, \quad \omega^2 = \frac{k}{M} \left(\frac{1}{l_h} + \frac{1}{l_d}\right), \quad a, b \in \mathbb{R}.$$

Partikulární řešení nehomogenní rovnice hledáme v zobrazeném tvaru pravé strany, tj. jako polynom druhého stupně $x_p(t) = A + Bt + Ct^2$. Dosezením do rovnice, v něž koeeficienty polynomu $f(t)$ označíme zkráceně P, Q, tj. $f(t) = P + Qt^2$, dostaneme pro A, B, C postupně

$$2C + \omega^2(A + Bt + Ct^2) = P + Qt^2 \iff (2C - P + \omega^2 A) + \omega^2 Bt + (\omega^2 C - Q) t^2 = 0;$$

$$x_h(t) = a \cos \omega t + b \sin \omega t, \quad \omega^2 = \frac{k}{M} \left(\frac{1}{l_h} + \frac{1}{l_d}\right), \quad a, b \in \mathbb{R}.$$
2.4. **NEWTONOVY ZÁKONY A POHYBOVÉ ROVNICE**

\[C = \frac{Q}{\omega^2}, \quad B = 0, \quad A = \frac{P}{\omega^2} - \frac{2Q}{\omega^4}. \]

Obecné řešení nehomogenní rovnice je

\[x(t) = x_h(t) + x_p(t) = a \cos \omega t + b \sin \omega t + \left(\frac{P}{\omega^2} - \frac{2Q}{\omega^4} + \frac{Q_l^2}{\omega^2} \right). \]

U platném položení podmínek dostaneme hodnoty konstant \(a = \frac{2Q}{\omega^2} \) a \(b = 0 \). Řešení úlohy je tedy funkce

\[x(t) = \frac{2Q}{\omega^4} \cos \omega t + \left(\frac{Mgl_h}{k} + \frac{Q_l^2}{\omega^2} - \frac{2Q}{\omega^4} \right). \]

Vyjádříme ještě tahové síly horního a dolního provázku.

\[F_h(t) = -Mg - \frac{ka_0}{2(l_h + l_d)} t^2 - \frac{2Qk}{l_h \omega^4} (\cos \omega t - 1), \]

\[F_d(t) = \frac{ka_0}{2(l_h + l_d)} t^2 - \frac{2Qk}{l_d \omega^4} (\cos \omega t - 1). \]

Po zpětném dosazení za \(Q \) a trpělivé úpravě vyjádříme nakonec tyto síly pomocí původně zadaných charakteristik soustavy.

\[F_h = -Mg - \frac{ka_0}{2(l_h + l_d)} t^2 - M\omega_0 \frac{l_h l_d}{(l_h + l_d)} (\cos \omega t - 1) \]

\[F_d = \frac{ka_0}{2(l_h + l_d)} t^2 - M\omega_0 \left(\frac{l_h}{l_h + l_d} \right)^2 (\cos \omega t - 1) \]

Tyto vztahy jsou docela komplikované, ale rychlou orientační kontrolu, že by mohly být správné, snadno provedeme. Z experimentu plyne, že v čase \(t = 0 \), kdy je těleso v rovnovážné poloze \(x(0) = x_r \) a má nulovou rychlost, musí být velikost tahové síly horního provázku rovna \(F_h(0) = Mg \) a tahová síla dolního provázku nulová, \(F_d(0) = 0 \). Dosazením \(t = 0 \) do časových závislostí těchto sil zjistíme, že tomu tak opravdu je. Průběh tahových sil je znázorněn na OBR. 2.23 pro hodnoty \(M = 2 \text{ kg}, \ l_h = 0.3 \text{ m}, \ l_h = 0.2 \text{ m}, \ k = 3 \text{ kN}, \ g = 10 \text{ m s}^{-2} \) a pro dvě hodnoty zrychlení \(a_0 \), konkrétně \(a_0 = 2 \text{ m s}^{-2} \) (obrázek vlevo — „pomalý“ tah) a \(a_0 = 20 \text{ m s}^{-2} \) (obrázek vpravo — „trhnutí“).
Obr. 2.23-a: K příkladu 2.17 — tahové síly provázků, požární tah

Obr. 2.23-b: K příkladu 2.17 — trhnutí

Vztahy pro tahové síly platí samozřejmě pouze do okamžiku, než některý z provázků praskne, tj. než velikost tahové síly v něm překročí mez pevnosti. Pro nás
příklad jsme zvolili mezi pevností $F_p = 40 \text{ N}$. Jak pokus dopadne, z grafů přímo vidíme. Při pomalém tahu praskne nejprve horní provázek, při rychlé dolní. (V grafu je znázorněn průběh velikosti tahových sil, tj. $|F_h|$ a $|F_d|$.)

2.4.3 Newtonovy zákony v neinerciálních soustavách

Podle výsledků příkladu 1.13 se může zdát, že popis pohybu částice, resp. soustavy částic či tělesa v neinerciální vztazné soustavě je podstatně složitější.

V konkrétních situacích tomu tak však může být právě naopak. Takovou situaci je třeba rotaci pohybu tělesa (setrvačníku) kolem pevného bodu. V inerciální vztazné soustavě může být takový pohyb poměrně složitý, zejména u nesymetrického a nevyváženého tělesa, vůči pozorovateli pevné spojeného s rotujícím tělem je však těleso dokonce v klidu. Abychom tyto situace docížili účinně řešit, musíme umět upravit Newtonovy zákony (pokud to bude možné) pro případ neinerciálních vztazných soustav a také umět vztaznou soustavu vhodně vybrat. Nejednodušší případ neinerciální vztazné soustavy je taková, která se vůči interciální soustavě pohybuje pouze translací s unášovým zrychlením \vec{A}. Jak to vypadá s druhým Newtonovým zákonem v této vztazné soustavě ukážeme na jednoduchém příkladu.

Příklad 2.18. Pohybové rovnice v neinerciálních soustavách.

Po vodorovných kolejích se rozjíždí nákladní vlak se zrychlením \vec{A}. Uprostřed vagónu leží na podlaze pohybu těžká bedna o hmotnosti m, která může po podlaze klouzat bez tření. Pohyb bedny pozoruje pozorovatel (vypravěč) na kolejích (laboratorní = inerciální vztazná soustava $\vec{S} = < O; x, y, z >$) a pasažéř ve vagónu (neinerciální vztazná soustava $\vec{S'} = < O'; x', y', z' >$), přičemž stejnojmenné ose obou soustav jsou trvale rovnoběžné. Určíme zrychlení bedny v obou vztazných soustavách pouze na základě dosavadní interpretace druhého Newtonova zákona (viz obr. 2.24).

![Obr. 2.24: Druhý Newtonův zákon v neinerciální soustavě](image-url)
Úvaha výpravčího = IVS: Zrychlení bedny v soustavě S označme \ddot{a}. Na bednu působí okolní tělesa takto: Země tříduvou silou $m\ddot{g}$, podlaha tlakovou silou \ddot{N}. Druhý Newtonův zákon pro zrychlení \ddot{a} má tvar
\[
m\ddot{a} = m\ddot{g} + \ddot{N}, \quad ma_x = 0, \quad ma_y = -Mg + N, \quad ma_z = 0.
\]
Tyto rovnice spolu s vazební podmínkou $y = 0 \implies a_y = 0$ vedou k teoretickému výsledku $\ddot{a}_{\text{teor}} = \vec{0}$. Ze zkušeností můžeme usoudit, že výsledek měření zrychlení \ddot{a} bude ve shodě s výpočtem, tj. $\ddot{a}_{\text{exp}} = \vec{0}$, aniž bychom experiment sami prováděli.

Úvaha pasažéra = NVS: Zrychlení bedny v soustavě S' označme \ddot{a}'. Podle toho, co o Newtonových zákonech víme, je jasné, že na bednu působí Země tříduvou silou $m\ddot{g}$ a podlaha kolmou tlakovou silou \ddot{N}. Žádná další tělesa, která by na bednu silově působila, v jejím v okolí nejsou (tření a odpor prostředí jsme zanedbali). Pro zrychlení \ddot{a}' platí
\[
m\ddot{a}' = m\ddot{g} + \ddot{N}, \quad ma'_x = 0, \quad ma'_y = -mg + N, \quad ma'_z = 0.
\]
Vazební podmínka je $y' = 0 \implies a'_y = 0$. Odtud $\ddot{a}'_{\text{teor}} = \vec{0}$, zatímco experiment ukáže $\ddot{a}'_{\text{exp}} = -\ddot{A}$. Experiment je tedy v rozporu s výsledkem teoretické úvahy.

Otázku je kde je chyba v úvaze pozorovatele spojeného s vagónem. (Předpodkládáme, že experiment je v pořádku.) Z hlediska newtonovské mechaniky je věc jasná — druhý Newtonův zákon platí v inerciálních vztažných soustavách. Abychom se používání druhého Newtonova zákona nemuseli pro neinerciální soustavy vzdát, pokusíme se jej opravit například tím, že k silám, jimiž působí na testovací částici reálné okolní objekty, které můžeme jasně specifikovat a pořízené i přiradiť jejich působení jednotlivě konkrétní silové zákony, přidáme formálně další „pomyslnou“ sílu \ddot{F}^s, která kompenzuje vliv neinerciálnosti soustavy. Opravený druhý Newtonův zákon pro bednu formulovaný pasažérem z příkladu 2.18 tedy bude vypisat takto:
\[
m\ddot{a} = m\ddot{g} + \ddot{N} + \ddot{F}^s, \quad ma_x = F_x^s, \quad ma_y = -mg + N + F_y^s, \quad ma_z = F_z^s. \quad (2.33)
\]
Aby, při vazební podmínce $a_y = 0$, vyšlo výpočtem $\ddot{a}_{\text{teor}} = \vec{0}$ a bylo tak dosaženo shody s experimentem, je třeba položit $\ddot{F}^s = -\ddot{A}$. Síla \ddot{F}^s zajišťujíce opravu druhého Newtonova zákona pro neinerciální soustavy, je tedy záporně vztažným součinem hmotnosti studované částice a unášeního zrychlení, které s částicí ovšem nijak nesouvise. V interpretaci, která síl \ddot{F}^s považuje za formální konstrukci, se tato síla nazývá fiktivní, někdy také, nepříliš vhodně, ztracená.

POZNÁMKA: Poznamenejme, že interpretace síly \ddot{F}^s jako fiktivní není jediná možná. Podle principu ekvivalence vysloveného A. Einsteinem nelze objektivně
2.4. NEWTONOVO ZÁKONY A POHYBOVÉ ROVNICE

zjistit, zda se pozorovatel nachází v neinerciální vztažné soustavě, nebo v do-
datečném gravitačním poli. V našem textu budeme používat interpretace blížší
newtonovskému pojetí — fiktivní síly. Obě pojetí však dávají stejně výsledky.

Získaný výsledek můžeme snadno zobecnit a vyjádřit fiktivní sílu pro případ
obecně neinerciální vztažné soustavy takto:

$$\vec{F}^s = -m\vec{a}_u = -m \left(\vec{A} + 2\vec{\omega} \times \vec{v} + \vec{\omega} \times (\vec{\omega} \times \vec{r}') + \vec{\varepsilon} \times \vec{r}' \right).$$

(2.34)

Vektor \vec{a}_u je unášivé zrychlení dané vztahem (1.64). Vektory

$$\vec{F}^s = -m\vec{A}, \quad \vec{F}^o_C = -2m\vec{\omega} \times \vec{v}', \quad \vec{F}^o_{OD} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r}'), \quad \vec{F}^o_E = -m\vec{\varepsilon} \times \vec{r}'.$$

představují postupně fiktivní sílu translační, Coriolisova, odstředivou a Eulerovu,

v souladu s terminologii vztahu (1.65).

PŘÍKLAD 2.19. Pohybové rovnice v neinerciálních soustavách — částice na
točně.

Modifikujeme počáteční zadání příkladu 1.13. Vztažná soustava $S = \langle O; x, y, z \rangle$
je inerciální, soustava $S' = \langle O'; x', y', z' \rangle$, která vůči ní rotuje stálou úhlovou
rychlostí $\vec{\omega} = (0, 0, \omega)$, je inerciální. Jde o nejednodušší případ rotačního
pohybu neinerciální soustavy — rovnoměrnou rotaci. Počátky soustav trvale
splyvají, z-ové osy rovněž. V okamžiku $t = 0$ splývaly i osy x-ové a y-ové. Před-
pokládejme dále, že na částici, pro kterou platí počáteční podmínky $\vec{r}(0) = 0,
\vec{v}(0) = \vec{v}_0 = (v_0, 0, 0)$ (v soustavě S) nepůsobí žádné okolní objekty. Určíme její
trajektorii v soustavě S' přímo aplikací „opraveného“ druhého Newtonova zá-
kona. Podle něj je výslednice sil působících na částici z hlediska soustavy S' dána
pouze fiktivními silami, pro něž v tomto konkrétním případě platí, vektorově a
poté ve složkách

$$\vec{F}^o_t = \vec{0}, \quad \vec{F}^o_C = -2m\omega \vec{x} \times \vec{v}', \quad \vec{F}^o_{OD} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r}'), \quad \vec{F}^o_E = \vec{0},
\quad \vec{F}^o = m \left(2\omega v' + \omega^2 x, -2\omega x \omega y, 0 \right).$$

Pohybové rovnice částice jsou

$$\ddot{x}' - 2\omega y' - \omega^2 x' = 0,$n
\ddot{y}' + 2\omega x' - \omega^2 y' = 0,$n
\ddot{z}' = 0.$n

Druhou rovnici vynásobenou imaginární jednotkou (i) přičteme k první rovnici
a po substituci $\xi = x' + iy'$ dostaneme soustavu

$$\ddot{\xi} + 2\omega \dot{\xi} - \omega^2 \xi = 0, \quad \ddot{z}' = 0.$n

Jedním řešením a s uvážením počátečních podmínek (v obou soustavách jsou
počáteční podmínky stejné) dostaneme postupně:

\begin{align*}
\dot{\xi} &= \omega \xi + \omega^2 \xi, \\
\dot{z}' &= 0.
\end{align*}
Charakteristická rovnice: \(\lambda^2 + 2i\omega - \omega^2 = 0 \).

Charakteristické kořeny: \(\lambda_1 = \lambda_2 = -i\omega \).

Fundamentální systém řešení: \(\xi_1(t) = \exp(-i\omega t), \xi_2(t) = t \exp(-i\omega t) \).

Obecné řešení: \(\xi(t) = (A + Bt) \exp(-i\omega t) \).

Počáteční podmínky: \(\xi(0) = 0, \, \dot{\xi}(0) = v_0 \).

Integrační konstanty: \(A = 0, \, B = v_0 \).

Partikulární řešení: \(\xi(t) = v_0 t \exp(-i\omega t), \, t \dot{\xi}(t) = \text{Re} \xi(t) = v_0 t \cos \omega t, \)

\(y(t) = \text{Im} \xi(t) = -v_0 t \sin \omega t. \)

\(\dot{z}'(t) = 0. \)

Parametrické vyjádření trajektorie částice je:

\[
\begin{align*}
\dot{x}'(t) & = v_0 t \cos \omega t, \\
\dot{y}'(t) & = -v_0 t \sin \omega t, \\
\dot{z}'(t) & = 0.
\end{align*}
\]

Výsledek můžeme snadno porovnat s výsledkem příkladu 1.13, zaměňme-li \(\omega \) za \(-\omega\) (vyvětlole).

Příklad 2.20. Matematické kyvadlo v laboratorní soustavě.

Ukážeme ještě podstatu řešení pohybu matematického kyvadla ve vztahu soustavě spojené s rotující Zemí. Štěrotu Zemí spojíme mezi laboratorní a vztahovou soustavu, kterou většinou považujeme za inerciální. Tento přístup je však pouze aproximativní a v reálných experimentech jsou odchyle od inerciálnosti měřitelné. Například velikost odstředivého zrychlení na rovině je

\[a_{OD} = \omega^2 R_Z = \left(\frac{2\pi}{T} \right)^2 R_Z \approx 0.034 \text{ m s}^{-2}, \]

což je dnešními prostředky zcela jistě hodnota měřitelná, přestože činí ponejmé promile tříhodinového zrychlení.

Kyvadlo kružící v tříhodinovém poli rotující Země se nazývá Foucaultova. Zvolíme soustavu soustředěn na zemském povrchu stejně jako na Osn. 1.8, t.j., že počátek spojíme s místem dané zeměpisné šírky (na zeměpisné délce výpočet nezáznam — zdůvodněte), osu \(x \) námříme podél místního poledníku (zeměpisná délka \(\Lambda \)), osu \(y \) podél místní rovnoběžky (zeměpisná šířka \(\Phi \)) a časně z náleží, t.j. volíme ji jako spojící středu Země s daným místem na povrchu zmenšující od středu k povrchu. Úhlová rychlost rotující Země v této soustavě soustředí má složky \(\dot{z}' = (\omega \cos \beta) \), \(\omega \sin \Phi \). Na kuličku kyvadla působí síly dané okolními objekty, tj. gravitační síly a tahuvá síla vlnka. Označíme-li \(\varphi \) okamžitou úhlovou výchozku kyvadla vzhledem k čem \(\alpha \) a \(\beta \) úhel, který svírá průmět sily \(\bar{T} \) do vodorovné rovině s místním poledníkem, získáme složky těchto síl:

\[m\ddot{g} = (0, 0, -mg), \quad \bar{T} = (T \sin \varphi \cos \beta, T \sin \varphi \sin \beta, T \cos \varphi). \]

2.5 Práce a mechanická energie

Práce a energie jsou pojmy běžně používané jak v běžném životě, tak v řadě odborných disciplín. V tomto odstavci je zavedeno jako fyzikální veličiny. Budeme hovořit o práci síly po křivce, popřípadě o práci síly po dráze, neboť o dráhou nemíme účinku síly, a o mechanické energii. Pojem práce síly pro dráhu je dobře známý pro nejednodušší případ — konstantní sílu a přímou dráhu. V této situaci, znázorněné na Obr. 2.25, je práce definována jako skalární součin síly \(\vec{F} \) a vektoru posunutí \(\Delta \vec{r} \), tj.

\[
A = \vec{F} \cdot \Delta \vec{r} = Fs \cos \varphi, \quad \text{kde} \quad s = \| \Delta \vec{r} \|.
\]

(2.35)
Obr. 2.25: Práce konstantní síly po přímcí

Je samozřejmě, že \(\vec{F} \) je v daném případě některá ze sil, které na částici působí. Nemí to výslednice. Částice se totiž může pohybovat po přímcí jen tehdy, je-li normálová složka jejího zrychlení, a tedy i normálová složka výslednice sil, kterými na částici působí její okolí, nulová.

Přestože vztah (2.35) vystihuje jen velmi speciální případ, plyne z něj úplné zobecnění definice práce.

2.5.1 Práce síly po křivce

Předpokládejme, že se částice pohybuje po oblouku s parametrickým vyjádřením (1.11), tj.

\[
C : \vec{r} = \vec{r}(t) = (x(t), y(t), z(t)), \quad t \in [\alpha, \beta].
\]

Protože jde o fyzikální situaci, můžeme dále předpokládat, že funkce \(x(t) \), \(y(t) \) a \(z(t) \) mají z matematického hlediska všechny vlastnosti, které budeme pro výpočet potřebovat, především že mají derivaci (oblouk je hladký) a že existuje integrál (1.20), vyjadřující jeho délku (oblouk je rektifikovatelný). Sílu, o jejíž práci po křivce (oblouku) \(C \) se budeme zajímat, označme \(\vec{F} \). Znovu zdůrazníme, že se jedná o některou (kteroukoliv si vybereme) ze sil působících na částici. Tato síla může obecně záviset na poloze a rychlosti částice, ale i explicitně na čase, tj. \(\vec{F} = \vec{F}(\vec{r}, \vec{v}, t) \). Práce síly \(\vec{F} \) po křivce \(C \) definujeme jako integrál

\[
A_C = \int_{\alpha}^{\beta} \vec{F}(\vec{r}(t), \vec{v}(t), t) \, \vec{v}(t) \, dt. \tag{2.36}
\]

Jistě je na místě otázka, jak jsme právě k této definici dopadli. Výchozím je definice práce konstantní síly po přímcí (2.35) a myšlenka dělení oblouku použitá v odstavci 1.3.3 pro vyjádření délky obecného oblouku.
2.5. PRÁCE A MECHANICKÁ ENERGIE

Obr. 2.26: K definičním práci síln po křivce

Zvolme dělení $D = \{t_0, t_1, \ldots, t_n\}$, $\alpha = t_0 < t_1 < \ldots < t_n = \beta$, časového intervalu $[\alpha, \beta]$. Je-li toto dělení dostatečně jemné, můžeme v každém z intervalů $[t_j, t_{j+1}]$ považovat sílu \vec{F} za konstantní a nahradiť ji sílou v počátečním okamžiku tohoto intervalu, tj.

$$\vec{F}(\vec{r}(t), \vec{v}(t), t) \equiv \vec{F}(\vec{r}(t_j), \vec{v}(t_j), t_j), \quad t \in [t_j, t_{j+1}].$$

V intervalu $[t_j, t_{j+1}]$, tj. mezi body $\vec{r}(t_j)$ a $\vec{r}(t_{j+1})$, vykoná síla \vec{F} elementární práci přibližně

$$\Delta A_j \approx \vec{F}(\vec{r}(t_j), \vec{v}(t_j), t_j) \Delta \vec{r}(t_j) = \vec{F}(\vec{r}(t_j), \vec{v}(t_j), t_j) \frac{\vec{r}(t_{j+1}) - \vec{r}(t_j)}{t_{j+1} - t_j} \Delta t_j, \quad \Delta t_j = t_{j+1} - t_j.$$

Celková práce je pak dána součtem všech elementárních prací,

$$A_C = \sum_{j=0}^{n-1} \Delta A_j \approx \sum_{j=1}^{n-1} \vec{F}(\vec{r}(t_j), \vec{v}(t_j), t_j) \frac{\vec{r}(t_{j+1}) - \vec{r}(t_j)}{t_{j+1} - t_j} \Delta t_j.$$

Obdobně jako při odvození vztahu (1.22) provedeme limítu přechod k nulové normě dělení D, $\nu(D) \to 0$ a dopouštíme k integrálu

$$A_C = \int_{t=\alpha}^{t=\beta} \vec{F}(\vec{r}(t), \vec{v}(t), t) \vec{v}(t) \, dt, \quad \text{zkráceně } A_C = \int_{\alpha}^{\beta} \vec{F} \vec{v} \, dt.$$

Značíme jej

$$A_C = \int_{\mathbb{C}} \vec{F} \, d\vec{r} = \int_{\mathbb{C}} F_x \, dx + F_y \, dy + F_z \, dz \quad (2.37)$$

a hovoříme o křivkém integrálu druhého typu z vektové funkce \vec{F} po křivce \mathbb{C}. (Výraz (1.20), vyjadřující délkou obložku, představoval integraž prvého typu.)

Příklad 2.21. Práce odporových síl.

Uvažujme o kapci z příkladu 2.12. Kapka se pohybuje se v homogenním gravitačním poli Země (tj. jeho zrychlení je \vec{g}) a v odporujícím prostředí se Stokesovou odporovou sílou. Zajímá nás, jakou práci vykoná tříhová síla během pádu kapky a
jaká bude práce síly odporové. Pohlé kapky jsme v příkladu 2.12 výřešili v úplnosi, známé proto parametrické vyjádření její trajektorie. Známe také závislost její rychlosti na čase, kterou budeme pro výpočet práce potřebovat,

\[
\dot{x}(t) = \frac{mg}{6\pi\eta r} \left[1 - \exp \left(-\frac{6\pi\eta r}{m} t \right) \right] = v_m \left[1 - \exp \left(-\frac{gt}{v_m} \right) \right], \quad v_m = \frac{mg}{6\pi\eta r}.
\]

Nejprve určíme práci gravitační síly. Kapka padá z výšky \(h \) nad povrchem Země po dobu \(T \). v souladu s označením v příkladu 2.12 je \(x(0) = -h \) a \(x(T) = 0 \). Podle definice úhlova vztahu (2.36) vykoná gravitační síla během pádu práci

\[
A_g = \int_0^T \vec{F}_g \cdot \vec{v} \, dt = \int_0^T mg \dot{x} \, dt = mg (x(T) - x(0)) = mgh.
\]

Odporová síla vykoná práci

\[
A_o = \int_0^T \vec{F}_o \cdot \vec{v} \, dt = \int_0^T -6\pi\eta r \dot{x}^2 \, dt = -\frac{mg}{v_m} \int_0^T \left[1 - \exp \left(-\frac{gt}{v_m} \right) \right]^2 \, dt = T - \frac{2v_m}{g} \left[1 - \exp \left(-\frac{gt}{v_m} \right) \right] + \frac{v_m}{2g} \left[1 - \exp \left(-\frac{2gt}{v_m} \right) \right].
\]

Všimněme si jedné zajímavosti: Práce gravitační síly závisí pouze na výšce, z níž kapka padá a nikoli na tom, jak dlouho ji pálí trvá. Dopa pádu \(T \) se jistě liší pro různé hodnoty poloměru kapky a dynamické viskozity prostředí. Je to náhoda? Zřejmě ne. I kdyby se kapka pohybovala k zemi po jakékoli trajektorii \(\vec{r}(t) = (x(t), y(t), z(t)) \), bude práce gravitační síly při dané výšce \(h \) stále \(A_g = mgh \). Skutečně, platí

\[
A_g = \int_0^T mg \ddot{r} \, dt = mg \int_0^T \dot{x} \, dt = mg (x(0) - x(T)) = mgh.
\]

Pro práci síly \(\vec{F}_o = mg \) je tedy skutečně rozhodující výchozí výška kapky nad povrchem Země, nikoli způsob, jakým se kapka dostala na zem. ♠

V dalším odstavci uvidíme, že homogenní gravitační pole má z hlediska výpočtu práce speciální tvar — je tzv. konzervativní.

2.5.2 Konzervativní síly a potenciální energie

Příklad 2.21 naznačuje, že v případě že síla \(\vec{F} \), jejíž práci po dané trajektorii počítáme, závisí na rychlosti, popřípadě ještě explicitně na čase, bude výsledek záviset nejen na tvaru oboukou (křivky), po němž se částice pohybuje, ale i na jeho konkrétní parametrizaci. Z hlediska fyziky jsou zajímavé situace, kdy síla
2.5. PRÁCE A MECHANICKÁ ENERGIE

závisí pouze na poloze částice, \(\vec{F} = \vec{F}(\vec{r}) \). V případě takové závislosti hovoříme o **sílovém poli**, z matematického hlediska jde o **vektorové pole**.

Příklad 2.22. Práce sílového pole po křivce prakticky.

Částice se pohybuje v rovině v sílovém poli

\[
\vec{F}(\vec{r}) = (F_1(x, y), F_2(x, y)) = (ax^2y, b(y-x)) , \quad a = 1 \text{ N m}^{-3}, \quad b = 1 \text{ N m}^{-1}.
\]

Veličiny \(a \) a \(b \) jsou jednotkové rozměrové konstanty (zařaďují, aby veličina \(\vec{F} \) byla zadána v newtonech. Křivkou, po které se děje pohyb částice, je parabola o rovnici \(y = x^2 \) s počátečním bodem \(A = (0, 0) \) a koncovým bodem \(B = (1, 1) \).

Zjistíme, jaká bude práce síly \(\vec{F} \) při různých parametrizacích trajektorie. Připo-mějme, že různé parametrizace, kdy parametrem je čas, z fyzikálního hlediska znamenají, že různé částice projdou po těží geometrické křivce obecně v různých časových intervalech a různě rychle.

Obr. 2.27: K výpočtu práce síly po křivce

Zvolme například parametrizaci paraboly ve tvaru

\[
\mathcal{P}_1: \vec{r}(t) = (x(t), y(t)) = (u_1 t, u_2 t^2), \quad u_1 = 1 \text{ m s}^{-1}, \quad u_2 = 1 \text{ m s}^{-2}, \quad t \in [0, 1] \text{s}.
\]

Veličiny \(u_1 \) a \(u_2 \) jsou, podobně jako u skříně síly, **rozměrové konstanty**, jejichž hodnota je rovna jedné. **Práce síly** \(\vec{F} \) po této trajektorii je podle (2.36)

\[
A_{\mathcal{P}_1} = \int_0^1 \vec{F}(\vec{r}) \cdot d\vec{r} = \int_0^1 (F_1(x(t), y(t)) \dot{x}(t) + F_2(x(t), y(t)) \dot{y}(t)) \, dt =
\]

\[
= \int_0^1 (t^4 \cdot 1 + (t^2 - t) \cdot 1) \, dt = \frac{11}{30} \text{ J},
\]
Zkusme nyní jinou parametrizaci paraboly, třeba
\[P_2 : \vec{r}(t) = (x(t), y(t)) = (v_1 \sqrt{t - 1}, v_2 (t - 1)), \]
\[v_1 = 1 \text{ m s}^{-3/2}, \quad v_2 = 1 \text{ m s}^{-1}, \quad t \in [1, 2] \text{ s}. \]
Tato parametrizace znamená, že částice proběhne po parabole s bodu A do bodu B v časovém intervalu \([1, 2]\) s obecně s jinou rychlostí než v předchozím případě. Opět počtejme práci síly \(\vec{F} \):
\[
A_{P_2} = \int_1^2 \vec{F} \vec{v} \, dt = \int_1^2 (F_1(x(t), y(t)) \dot{x}(t) + F_2(x(t), y(t)) \dot{y}(t)) \, dt =
\]
\[
= \int_1^2 \left(\frac{(t - 1)^2}{2 \sqrt{t - 2}} + ((t - 1) - \sqrt{t - 1}) \right) \, dt =
\]
\[
= \frac{1}{5} (t - 1)^{5/2} + \frac{1}{2} (t - 1)^2 - \frac{2}{3} (t - 1)^{3/2} \bigg|_1^{2} = \frac{11}{30} \text{ J.}
\]
Výsledek je pro obě parametrizace stejný. Zkusme ještě zcela obecnou parametrizaci paraboly,
\[P : \vec{r}(t) = (x(t), y(t)) = (x(t), x^2(t)), \quad \vec{v}(t) = (\dot{x}(t), 2x(t) \dot{x}(t)), \]
\[x(\alpha) = 0, \quad x(\beta) = 1, \quad t \in [\alpha, \beta]. \]
\[A_P = \int_\alpha^\beta \vec{F} \vec{v} \, dt = \int_\alpha^\beta (F_1(x(t), y(t)) \dot{x}(t) + F_2(x(t), y(t)) \dot{y}(t)) \, dt =
\]
\[
= \int_\alpha^\beta (x^4(t) \dot{x}(t) + 2x(t) \dot{x}(t)(x^2(t) - x(t))) \, dt = \int_0^1 \left(u^4 + 2u^3 - 2u^2 \right) \, du = \frac{11}{30} \text{ J.}
\]
Při výpočtu integrálu jsme použili substituci \(u = x^4(t) \). Stejný výsledek vede k hypotéze, že opět nejde o náhodou — práce sílového pole \(\vec{F}(\vec{r}) \) po křivce nezávisí na konkrétní parametrizaci této křivky. ❖

Nezávislost práce sílového pole na parametrizaci křivky snadno dokážeme. Zvolme dvě různé parametrizace křivky \(C \),
\[C_1 : \vec{r}(t) = (x(t), y(t)), \quad t \in [\alpha_1, \beta_1], \]
\[C_2 : \vec{r}(\tau) = (\bar{x}(\tau), \bar{y}(\tau)), \quad \tau \in [\alpha_2, \beta_2], \]
kde
\[x(t) = x(\tau) = \bar{x}[\varphi(t)], \quad y(t) = \bar{y}(\tau) = \bar{y}[\varphi(t)], \]
\[\varphi : [\alpha_1, \beta_1] \ni t \longrightarrow \tau = \varphi(t) \in [\alpha_2, \beta_2], \quad \varphi(\alpha_1) = \alpha_2, \quad \varphi(\beta_1) = \beta_2, \]

přičemž zobrazení \(\varphi \) je prosté (pro libovolně dvě různé hodnoty \(t_1, t_2 \ni \alpha_1, \beta_1 \ni \varphi(t_1) \neq \varphi(t_2) \)) a zobrazuje interval \([\alpha_1, \beta_1]\) na interval \([\alpha_2, \beta_2]\). Označme \(\dot{x}(\tau) \), resp. \(\dot{y}(\tau) \) derivaci funkčí \(\bar{x}(\tau) \) a \(\bar{y}(\tau) \) podle proměnné \(\tau \). Podle pravidla pro derivace složené funkce platí
\[\dot{x}(t) = \dot{x}[\varphi(t)] \dot{\varphi}(t), \quad \dot{y}(t) = \dot{y}[\varphi(t)] \dot{\varphi}(t). \]
2.5. PRÁCE A MECHANICKÁ ENERGIE

Počítáme práci sílového pole \(\vec{F} \) po trajektorii \(C_1(t) \), při parametrizaci \(x = x(t), y = y(t) \):

\[
A_{C_1} = \int_{\alpha_1}^{\beta_1} (F_1(x(t), y(t)) \dot{x}(t) + F_2(x(t), y(t)) \dot{y}(t)) \, dt =
\int_{\alpha_1}^{\beta_2} \left(F_1(\varphi(t)), \hat{y}(\varphi(t)) \right) \dot{x}(t) + F_2(\varphi(t), \hat{y}(\varphi(t))) \dot{y}(t) \, dt.
\]

Předchozí výraz pro \(A_{C_1} \) jsme získali dosazením \(x(t) = \hat{x}(\varphi(t)), y(t) = \hat{y}(\varphi(t)) \) a použitím pravidla pro derivaci složené funkce. Zdánlivě komplikovaný integrál zjednodušíme použitím substituce \(\tau = \varphi(t) \). Dostáváme pak

\[
A_{C_1} = \int_{\alpha_2}^{\beta_2} \left(F_1(\tilde{x}(\tau), \tilde{y}(\tau)) \tilde{x}'(\tau) + F_2(\tilde{x}(\tau), \tilde{y}(\tau)) \tilde{y}'(\tau) \right) \, d\tau = A_{C_2}.
\]

Práce při obou parametrizacích oboukružní \(C \) je stejná.

Jak tomu bude v případě, že body, mezi nimiž se částice pohybuje v daném sílovém polí spojují křivkou? Očekáváme, že obecně se práce vykonané týmž sílovým polem po různých křivkách budou lišit — částice přeje v sílovém polí projde jinou množinou bodů. Ověříme to rovněž na příkladu.

Příklad 2.23. Závisí práce na tvaru křivky?

Vraťme se k příkladu 2.22 a spojme body \(A \) a \(B \) pro jednoduchost například úsečkou. Víme již, že při výpočtu práce nezáleží na parametrizaci, zvolíme ji proto co nejjednodušší:

\[
\mathcal{U} : [0, 1] \ni t \rightarrow \vec{r}(t) = (x(t), y(t)) = (t, t), \quad \vec{v} = (1, 1).
\]

Pak

\[
A_{\mathcal{U}} = \int_0^1 \vec{F} \vec{v} \, dt = \int_0^1 (t^3 \, dt) = \frac{1}{4} \text{ J}.
\]

Skutečně, práce vyšla jinak, jak jsme očekávali.

Příklad 2.24. ... nebo nezávisí?

Uvažme víšk jiné sílové pole, například

\[
\vec{F}(x, y) = (3ax^2y^2, 2bx^3y), \quad a = 1 \text{ N m}^{-4}, \quad b = 1 \text{ N m}^{-4},
\]

\(a \) a \(b \) jsou zase rozměrové konstanty. Vypočteme práci tohoto sílového pole po parabole \(y = x^2 \) a poté zvolíme \(x(t) = t, y(t) = t^2 \), \(t \in [0, 1] \).

Párově se mezí rozdílové konstanty rovnou dosazujeme hodnotu 1 a počítáme práci:

\[
P : \vec{r} = (x(t), y(t)) = (t, t^2), \quad \mathcal{U} : \vec{r} = (x(t), y(t)) = (t, t), \quad t \in [0, 1]
\]

\[
A_P = \int_0^1 (3t^2 \cdot t^4, 2t^3 \cdot t^2) \, dt = \int_0^1 7t^6 \, dt = 1 \text{ J},
\]

\(\star \star \star \)
\[A_t = \int_0^1 (3t^2 \cdot t^2 \cdot 1 + 2t^3 \cdot t \cdot 1) \, dt = \int_0^1 5t^4 \, dt = 1 \text{ J}. \]

Zda se v tomto případě jedná o náhodný výsledek, musíme teprve prověřit. ♠

Předchozí příklady navodily otázku, zda existují silová pole s natalík speciálními vlastnostmi, že jejich práce bude záviset pouze na počátečním i koncovém bodu křivky, po už se působí tedy sily (tj. nedoplněk částice) pohybuje, ne však na tvaru křivky samotné. Taková pole existují a nazývají se **konzervativní** — později uvidíme, že to souvisí se zákonem zachování energie.

V příkladu 2.21 jsme viděli, že práce konstantní sily \(m\vec{g} \) charakterizující homogenní gravitační pole nezávisí na tvaru křivky, po které se pohybovala částice. Homogenní silové pole je tedy konzervativní, bez ohledu na to, jaké je povaha. Důkaz je jednoduchý a přesně reprodukuje postup z příkladu 2.21: Je-li \(\vec{F} = \text{konst.} \), pak práce této sily po křivce s počátečním bodem \(\vec{r}_\alpha = \vec{r}(\alpha) \) a koncovým bodem \(\vec{r}_\beta = \vec{r}(\beta) \) je

\[A = \int_C \vec{F} \, d\vec{r} = \int_\alpha^\beta \vec{F}(t) \, dt = \vec{F}(\vec{r}_\beta - \vec{r}_\alpha). \]

Situaci názorně ukazuje Obr. 2.28. Platí v něm pro jakékoliv rozdělení křivky \(C \) na úseky

\[\sum_{j=1}^{n-1} \vec{F} \Delta \vec{r}_j = \vec{F} \sum_{j=1}^{n-1} \Delta \vec{r}_j = \vec{F} (\vec{r}_\alpha - \vec{r}_\beta). \]

Obr. 2.28: Práce homogenního silového pole
Homogenní silové pole můžeme za jistých okolností považovat za přibližnou náhradu skutečného silového pole v dostatečně malých prostorových oblastech. V případě gravitační interakce je silové pole, jít působí na částicí o hmotnosti \(m \) částice o hmotnosti \(M \) (například Slunce na planetu) určeno Newtonovým gravitačním zákonem

\[
\vec{F}_g = -\kappa \frac{mM}{r^2} \hat{r}^0 = -\kappa mM \frac{\vec{r}}{r^3},
\]

Jedná se o centrální silové pole — interakční síla má stále směr spojnici obou částic, směřuje do „centra“ \(M \).

Uklážme, že každě centrální silové pole je konzervativní. Obecně je tvaru

\[
\vec{F} = \pm F(r) \hat{r}^0, \quad \text{kde} \quad \hat{r}^0 = \frac{\vec{r}}{r} \quad (2.38)
\]

je jednotkový vektor ve směru polohového vektoru \(\vec{r} \), znaménko plus, resp. minus se uplatní, jeli síla \(\vec{F} \) odpovídá, resp. přítažlivá, viz vztahy (2.4), resp. (2.6). Výpočet práce centrálního pole pomůže geometricky názorně přibližit Obr. 2.29.

POZNÁMKA: Obrázek vychází opět z představy dělení skutečné křivky, po které se pohybuje částice (působíště dané centrální síly), na malé úseky, v nichž lze skutečný obouk mezi dvěma body nahradit úsečkou. Vektor posunutí \(\Delta \vec{r}_j \) v \(j \)-tém úseku, určený touto úsečkou, je součtem vektoru \(\Delta \vec{y}_j \), představujícího posunutí v radiaálním směru, a vektoru \(\Delta \vec{s}_j \), představujícího posunutí ve směru přibližně kolmém k radiaálnímu směru. Míra aproximace je dáná velikostí \(j \)-tého kroku dělení křivky. V Obr. 2.29 je nepřesnost dobře vidět — vektory \(\Delta \vec{s}_j \) a \(\Delta \vec{y}_j \) v něm kolmě nejsou. Při zjednodušení dělení se však přibližně vztahy i geometrické relace zpřesňují a v limitě \(\nu(D) \to 0 \) se stávají přesnými.
Obr. 2.29: Práce centrálního silového pole

Platí

\[
A_C = \int \vec{F} \, d\vec{r} = \int_{r_a}^{r_\beta} \pm F(r) r^0 \, dr^0 = \int_{\alpha}^{\beta} \pm F(r(t)) r^0(t) \frac{dr^0}{dt} \, dt = \int_{\alpha}^{\beta} \pm F(r(t)) (\dot{r} r^0 + r \ddot{r}) \, dt = \int_{r_a}^{r_\beta} \pm F(r) \, dr,
\]

Při úpravě jsme využili skutečnost, že vektory \(\vec{r}^0 \) a \(\vec{r}^0 \) jsou navzájem kolmé. Jednou integrační proměnnou se po této úpravě stala vzdálenost částice \(m \) od centra — proměnná \(r \in [r_a, r_\beta] \). Integrál určující práci je tedy jednoduchým určitým (Riemannovým) integrálem. Označme jako \(-U(r) \) primitivní funkci k funkci \(\pm F(r) \) a funkci \(U(r) \) nazveme potenciální energie částice \(m \) v centrálním silovém polí (buzeném centrem \(M \)). Platí

\[
-U(r) = \int_{r_a}^{r_\beta} \pm F(r) \, dr. \tag{2.39}
\]

Výpočet i výsledek odpovídají obrázku 2.29. Ve všech bodech každé z vyznačených sfér je velikost centrální síly \(\vec{F}(r) \) stejná. Pro elementární práci v \(i \)-tém úseku křivky \(C \) při libovolném dělení intervalu \([\alpha, \beta] \) platí

\[
\Delta A_j = \vec{F}(\vec{r}_j) \Delta \vec{r}_j = \vec{F}(\vec{r}_j) (\Delta \vec{r}_j + \Delta \vec{s}_j).
\]
2.5. PRÁCE A MECHANICKÁ ENERGIE

Význam vektorů $\Delta \vec{u}_j$ a $\Delta \vec{s}_j$ je zřejmý z obrázku Platí

$$\Delta \vec{u}_j = \Delta r_j \vec{r}_j^0, \quad \Delta \vec{s}_j = r_j^0 \vec{r}_j.$$

Pak

$$\Delta A_j = \pm F(r_j)(r^0 \vec{r}_j^0) \Delta r_j = \pm F(r_j) \Delta r_j,$$

$$\Delta A_C = \sum_{j=0}^{n-1} \pm F(r_j) \Delta r_i, \quad A_C = \int_0^\beta \pm F(r) \, dr.$$

Centrální síla koná práci jen při centrálních (radiálních) posunutích. Při posunutích kolmých k radiálnímu směru práci nekoná, neboť je na taková posunutí kolmá. Každý vektor posunutí se však dá rozložit na posunutí radiální a posunutí k němu kolmé.

Potenciální energie, jakožto záporně vztažná primitivní funkce k $\pm F(r)$, je určena až na konstantu. Pro určení je nutné hodnotu konstanty zvolit. Obvyklý způsob jejího určení spočívá ve volbě tzv. hladin nulové potenciální energie. Tím rozumíme volbu určité hodnoty r_0, jíž přisoudujeme nulovou potenciální energii. Množina bodů, které této vzdálenosti odpovídají, tvoří kulovou plochu se středem v počátku soustavy souřadnic (v něm je umístěna částice M).

Příklad 2.25. Gravitační potenciální energie.

Z předchozích výsledků vyplývá, že gravitační pole buzené částicí o hmotnosti M je konzervativní, neboť je centrální. Vypočteme potenciální energii částice o hmotnosti m v tomto poli. Platí

$$-U_g(r) = \int \vec{F}_g \, dr = -kmM \int \frac{dr}{r^2} = \frac{kmM}{r} + C \implies U_g(r) = -\frac{kmM}{r} + \text{konst.}.$$

Nulovou hladinu potenciální energie můžeme zvolit v libovolné vzdálenosti. Vzhledem k tomu, že gravitační síla slábná se čtvercem vzdálenosti a pro $r \to \infty$ se její velikost asymptoticky bliží nule, jeví se přirozeně zvolit nulovou hladinu potenciální energie „v nekonečnu“, tj. tak, aby platilo $\lim_{r \to \infty} U_g(r) = 0$. To odpovídá nulové hodnotě integrační konstanty. Potenciální energii V_0 vzťahovanou na jednotkovou hmotnost částice nazýváme *gravitační potenciál,*

$$U_g = -\frac{kmM}{r}, \quad V_0 = -\frac{kM}{r}.$$

Množina bodů konstatního potenciálu $\mathcal{K} = \{(x, y, z) \in \mathbb{R}^2 | V_0(x, y, z) = V_0 = \text{konst.}\}$ se nazývá *ekvipotenciální plocha.* Je to kulová plocha se středem v počátku soustavy souřadnic a s poloměrem kM/V_0.

Příklad 2.26. Potenciálové energie průřízn.

Také pružná síla (2.8), jíž podle Hookova zákona působí napjatá, nebo stlačená pružina na těleso, které je na ní uchyceno, je konzervativní. Vypočteme odpovídající potenciální energii.
KAPITOLA 2. PRINCIPY KLÁSICKÉ MECHANIKY

Obr. 2.30: Potenciální energie pružiny

Platí

\[U_p(x) = - \int \tilde{F}_p \, dx = - \int (-kx) \, dx = \frac{1}{2} kx^2 + \text{konst.} \] \hspace{1cm} (2.41)

Zvolíme-li hladinu nulové potenciální energie v bodě \(x = 0 \), tj. nenapjaté pružně přisonadíme energii nulovou, výřež integrační konstantu rovna nule. ♠

Zjistíme nyní obecné podmínky pro to, aby sílové pole bylo konzervativní. Pro jednoduchost opět uvažujeme o sílovém poli v rovině \(\tilde{F}(r) = (F_x(x, y), F_y(x, y)) \), na trojrozměrný případ \(\tilde{F}(r) = (F_x(x, y, z), F_y(x, y, z), F_z(x, y, z)) \) výsledek snadněji znázorníme. Budeme potřebovat nové pojmy z matematiky — parcíální derivace a úplný diferenciál funkce dvou a více proměnných. Uvažujeme o funkcích dvou proměnných \(f(x, y) \). Jejími parcíálními derivacemi v bodě \((a, b) \) rozmístíme limity (pokud existují)

\[\frac{\partial f(x, y)}{\partial x} \bigg|_{a,b} = \lim_{x \to a} \frac{f(x, b) - f(a, b)}{x - a}, \quad \frac{\partial f(x, y)}{\partial x} \bigg|_{a,b} = \lim_{y \to b} \frac{f(a, y) - f(a, b)}{y - b} \] \hspace{1cm} (2.42)

Pro jednoduchost zápisu budeme značit

\[\frac{\partial f(x, y)}{\partial x} \bigg|_{a,b} = \frac{\partial f(a, b)}{\partial x}, \quad \frac{\partial f(x, y)}{\partial y} \bigg|_{a,b} = \frac{\partial f(a, b)}{\partial y}. \]

Samozřejmě, tento zápis neznamená, že bychom napřed dosadíme do funkčního předpisu bod \((a, b) \) a terpěv potom derivovali — vyšla by nula. Pro vyčíslění parcíálních derivací v konkrétně zadáném bodě \((a, b) \) je musíme nejprve vypočídat v obecném bodě \((x, y) \) a terpěv potom dosadit bod \((a, b) \).

Geometricky jsou parcíální derivace velmi názorné, podobně jako „obyčejná“ derivace funkce jedné proměnné [viz Obr. 2.31.] Jsou to směrnice tečen vedených bodem \((a, b, f(a, b)) \) na grafu funkce \(f(x, y) \) ke křivkám \(C_1 \), resp. \(C_2 \) které vzniknou jako řezy grafu rovinami o rovnicích \(y = b \), resp. \(x = a \).
2.5. PRÁCE A MECHANICKÁ ENERGIE

Obr. 2.31: Geometrický význam parcíálních derivací

Z definice parcíálních derivací je zřejmé, že jejich praktický výpočet se provádí tak, že při derivování podle proměnné x zacházíme s proměnnou y jako s konstantou a naopak.

Jestliže parcíální derivace funkce \(f(x, y) \) definovány například na jistě otevřené podmnožině M definujícího oboru této funkce, vzniká její funkce

\[
\begin{align*}
 f_x : M \ni (x, y) &\mapsto f_x(x, y) = \frac{\partial f(x, y)}{\partial x}, \\
 f_y : M \ni (x, y) &\mapsto f_y(x, y) = \frac{\partial f(x, y)}{\partial y}.
\end{align*}
\]

Jeho parcíální derivace (na množině, na níž existují)

\[
\begin{align*}
 f_{xx}(x, y) &= \frac{\partial^2 f(x, y)}{\partial x^2}, \\
 f_{xy}(x, y) &= \frac{\partial^2 f(x, y)}{\partial x \partial y}, \\
 f_{yx}(x, y) &= \frac{\partial^2 f(x, y)}{\partial y \partial x}, \\
 f_{yy}(x, y) &= \frac{\partial^2 f(x, y)}{\partial y^2},
\end{align*}
\]

jsou parcíální derivace druhého řádu funkce \(f(x, y) \), atd. Jsou-li tzv. smíšené derivace \(f_{xy} \) a \(f_{yx} \) spojitě, jsou ní rovny. Stejnou vlastnost mají smíšené derivace vyšších řádů — není podstatné, v jakém pořadí podle jednotlivých proměnných derivujeme, rozhodující je pouze to, kolikrát jsme podle každé z proměnných derivovali.

Podobně jako u funkcí jedné proměnné může být funkce více proměnných složená. Uvažujme pro jednoduchost opět o funkcích dvou proměnných, konkrétně \(F(u, v) \) a \(u = \varphi(x, y) \) a \(v = \psi(x, y) \). Složená funkce \(f(x, y) \) proměnných \(x \) a \(y \) z nich vzniká dvojím zmenšením \(\varphi(x, y) \) a \(\psi(x, y) \) (tzv. vnitřní složky) za \(u a v \) do funkčního předmětu \(F(u, v) \) (tzv. vnější složky),

\[
f(x, y) = F(\varphi(x, y), \psi(x, y)).
\]

Vnitřní složky mohou samozřejmě být funkcemi obecně n proměnných a také vnitřních složek může být obecný počet, například \(m, F(y_1, \ldots, y_m); y_n = \varphi_j(x_1, \ldots, x_n), 1 \leq n \leq m \). Složená funkce pak má tvar

\[
f(x_1, \ldots, x_n) = F(\varphi_1(x_1, \ldots, x_n), \ldots, \varphi_m(x_1, \ldots, x_n)),
\]

parciální derivace složené funkce \(f(x_1, \ldots, x_n) \) v bodě \(a = (a_1, \ldots, a_n) \) podle proměnné \(x_j, 1 \leq j \leq n \) je limíta

\[
f_j(a_1, \ldots, a_n) = \frac{\partial f(x_1, \ldots, x_n)}{\partial x_j} \bigg|_{a} = \lim_{x_j \to a_j} f(a_1, \ldots, x_j, \ldots, a_n) - f(a_1, \ldots, a_j, \ldots, a_n). \]
Podobně jako u složené funkce jedné proměnné je však třeba umět tuto limitu vyjádřit pomocí parciálních derivací vnitřních složek a parciálních derivací vnitřní složky. Ujme se myšlenku postupu, který vede k tzv. řeřezovému pravidlu. Upravujeme zlomek za limitou v předchozím vztahu pro případ, že vnitřní složka i složky vnitřní budou funkce dvou proměnných, tj. \(F = F(u, v) \), \(u = \varphi(x, y) \), \(v = \psi(x, y) \). Počítáme derivací složené funkce \(f(x, y) = F(\varphi(x, y), \psi(x, y)) \) v bodě \((a, b)\) podle proměnné \(x \). Označme \(u = \varphi(x, b) \), \(v = \psi(x, b) \), \(u_0 = \varphi(a, b) \), \(v_0 = \psi(a, b) \). Platí
\[
\lim_{x \to a} \frac{f(x, b) - f(a, b)}{x - a} = \lim_{x \to a} \frac{F(\varphi(x, b), \psi(x, b)) - F(\varphi(a, b), \psi(a, b))}{x - a} = \lim_{x \to a} \frac{F(\varphi(x, b), \psi(x, b)) - F(\varphi(a, b), \psi(x, b))}{x - a} + \lim_{x \to a} \frac{F(\varphi(a, b), \psi(x, b)) - F(\varphi(a, b), \psi(a, b))}{x - a} = \lim_{x \to a} \frac{F(u, v) - F(u_0, v)}{u - u_0} \frac{\varphi(x, b) - \varphi(a, b)}{x - a} + \lim_{x \to a} \frac{F(u, v) - F(u_0, v_0)}{v - v_0} \frac{\psi(x, b) - \psi(a, b)}{x - a}.
\]
Předpokládejme, že pro vnitřní i vnitřní složky existuje parciální derivace podle \(x \) v bodě \((a, b)\) a vnitřní složka má parciální derivace podle proměnných \(u \) a \(v \) v dokončí spojitě. Provedeme limitní přechod \(x \to a \). Platí
\[
\lim_{x \to a} \frac{\varphi(x, b) - \varphi(a, b)}{x - a} = \frac{\partial \varphi(a, b)}{\partial x}, \quad \lim_{x \to a} \frac{\psi(x, b) - \psi(a, b)}{x - a} = \frac{\partial \psi(a, b)}{\partial x}.
\]
Funkce \(\varphi(x, b) \), \(\psi(x, b) \) s proměnnou \(y \) zafixovanou na hodnotě \(b \) jsou faktycky funkemí jedné proměnné \(x \). Z existence jejich derivace podle této proměnné proto plyne jejich spojitost, tj. \(\lim_{x \to a} \varphi(x, b) = \varphi(a, b) \), \(\lim_{x \to a} \psi(x, b) = \psi(a, b) \). Pro \(x \to a \) je proto také \(u \to u_0 \) a \(v \to v_0 \). Dále je
\[
\lim_{u \to u_0} \frac{F(u, v) - F(u_0, v)}{u - u_0} = \frac{\partial F(u_0, v)}{\partial u}, \quad \lim_{v \to v_0} \frac{F(u, v) - F(u_0, v_0)}{v - v_0} = \frac{\partial F(u_0, v_0)}{\partial v}.
\]
Provoze je funkce \(F_a(u, v) \) (parciální derivace vnitřní složky podle proměnné \(u \)) v bodě \((u_0, v_0)\) spojitá, platí
\[
\lim_{v \to v_0} \frac{\partial F(u_0, v)}{\partial v} = \frac{\partial F(u_0, v_0)}{\partial v}.
\]
A to už byl poslední krok k odvození pravidla pro derivaci složené funkce. Dostali jsme
\[
\frac{\partial f(a, b)}{\partial x} = \frac{\partial F(u_0, v_0)}{\partial u} \frac{\partial \varphi(a, b)}{\partial x} + \frac{\partial F(u_0, v_0)}{\partial v} \frac{\partial \psi(a, b)}{\partial x},
\]
a podobně pro parciální derivaci podle \(y \),
\[
\frac{\partial f(a, b)}{\partial y} = \frac{\partial F(u_0, v_0)}{\partial u} \frac{\partial \varphi(a, b)}{\partial y} + \frac{\partial F(u_0, v_0)}{\partial v} \frac{\partial \psi(a, b)}{\partial y}.
\]
Pravidlo nejčastěji zapisačme zjednodušeně, bez vyznačování bodů, v němž se mají derivace vyčísilit,

\[
\begin{align*}
\frac{df}{dx} &= \frac{\partial F}{\partial u} \frac{du}{dx} + \frac{\partial F}{\partial v} \frac{dv}{dx}, \\
\frac{df}{dy} &= \frac{\partial F}{\partial u} \frac{du}{dy} + \frac{\partial F}{\partial v} \frac{dv}{dy}.
\end{align*}
\]

(2.43)

K formulaci obecných podmínek konzervativnosti silového pole potřebujeme vedle parcíálních derivací ještě další matematický pojem — úplný diferenciál funkce víc proměnných. Pod-
statu definice vyjasmněme na funkci jedné proměnné a poté ji formulujeme pro funkci dvou proměnných. Zobecnění na funkci více proměnných je pak jà velice snadné. Na Obr. 2.32 je znázorněn schematický hladký graf funkce \(y = f(x) \) v okolí bodu \(a \).

\[\text{Obr. 2.32: Diferenciál funkce jedné proměnné}\]

Na obrázku je vidět, že přírůstek funkce \(f(x) \) mezi body \(a \) a \(a + h \), \(f(a + x) - f(a) \) je složen ze dvou přírůstků — přírůstek na tečné \(d(a)(h) = h \tan a = f'(a) h \) a veličny \(\chi(a, h) \),

\[
f(a + x) - f(a) = f'(a) h + \chi(a, h).\]

Pokud se přírůstek \(h \) bude zmenšovat a limitě bližší k nule, bude klesat k nule i hodnota každého z obou přírůstků. Přírůstek na tečné se mění lineárně, přírůstek \(\chi(a, h) \) zůstává na tvaru funkce. V případě, že hod \(\chi(a, h) \rightarrow 0 \) bude rychleji než lineární, tj.

\[
\lim_{h \to 0} \frac{\chi(a, h)}{h} = 0,
\]

je intuitivně jasné, že přírůstek funkce můžeme nahradit přírůstkem na tečné, a to tím lépe, čím je \(h \) menší. V takovém případě říkáme, že je funkce \(f(x) \) v bodě \(a \), diferencovatelná a výraz

\[
d(a)(h) = h \tan a = f'(a) h
\]

se nazývá úplný diferenciál funkce \(f(x) \) v bodě \(a \). Pokud má funkce \(f(x) \) v bodě \(a \) derivaci, pak je vztah pro přírůstek \(\chi(a, h) \) automaticky splněn. Skutečně,

\[
\frac{\chi(a, h)}{h} = \frac{f(a + h) - f(a)}{h} - f'(a) = \lim_{h \to 0} \frac{\chi(a, h)}{h} = \lim_{h \to 0} \left(\frac{f(a + h) - f(a)}{h} - f'(a) \right) = 0.
\]

Úplný diferenciál má i názorný geometrický význam. Koeeficient \(f'(a) \) je toliš směrnice tečny ke grafu funkce v bodě \(a \), novnice tečny je

\[
y - f(a, h) = f'(a)(x - a).\]
Názornou situaci zobecníme na případ funkce dvou a více proměnných. Funkce \(f(x, y) \) se nazývá diferencovatelná v bodě \((a, b)\) svého definiciho oboru, jestliže existují čísla \(A \) a \(B \) a funkce \(\chi((a, b), (h, k)) \) tak, že platí

\[
f(a + h, b + k) - f(a, b) = Ah + Bk + \chi((a, b), (h, k)), \quad \lim_{(h, k) \to (0, 0)} \frac{\chi((a, b), (h, k))}{\sqrt{h^2 + k^2}} = 0.
\]

Jsem-li předchozí vztahy splněny, tj. její funkce v daném bodě diferencovatelná, jsem čísla \(A \) a \(B \) parciálními derivacemi funkce \(f(x, y) \) v bodě \((a, b)\) a výraz

\[
df(a, b)(h, k) = \frac{\partial f(a, b)}{\partial x} h + \frac{\partial f(a, b)}{\partial y} k
\]

se nazývá úplný diferenciál funkce \(f(x, y) \) v bodě \((a, b)\). Že jsou čísla \(A \) a \(B \) pravé parciálními derivacemi funkce \(f(x, y) \) vyplývá z existence římsy

\[
0 = \lim_{(h, k) \to (0, 0)} \frac{\chi((a, b), (h, k))}{\sqrt{h^2 + k^2}} = \lim_{(h, k) \to (0, 0)} \left[\frac{f(a + h, b + k) - f(a, b)}{\sqrt{h^2 + k^2}} - \frac{Ah + Bk}{\sqrt{h^2 + k^2}} \right]
\]

Tuto limitu můžeme počítat „postupně“, \(A = \frac{\partial f(a, b)}{\partial x} \), a podobně, při opačném pořadí výpočtu limity, \(B = \frac{\partial f(a, b)}{\partial y} \)

Úplný diferenciál funkce představuje lineární přesněk k jejímu přírůstku a přibližně lze jeho hodnotou nahradit hodnotou skutečného přírůstku. Geometrická interpretace úplného diferenciálu je obdobná jako u funkce jedné proměnné. Vztah

\[
y - f(a, b) = \frac{\partial f(a, b)}{\partial x} (x - a) + \frac{\partial f(a, b)}{\partial y} (y - b)
\]

je rovnici tečné roviny vedené bodem \((a, b, f(a, b))\) na grafu funkce \(f(x, y) \).

Příklad 2.27. Diferenciály souřadnicových funkcí.

Uvažujme o tzv. souřadnicových funkcích, přírůstcích bodů \((x, y)\) jeho jednotlivé souřadnice

\[
 f_1(x, y) = x(x, y) = x, \quad f_2(x, y) = y(x, y) = y
\]

a spočtěme jejich úplný diferenciál. Pro libovolný bod \((x, y)\) platí

\[
\frac{df_1(x, y)}{dx} = 1, \quad \frac{df_1(x, y)}{dy} = 0, \quad \frac{df_2(x, y)}{dx} = 0, \quad \frac{df_2(x, y)}{dy} = 1,
\]

\[
dx(x, y)(h, k) = h, \quad dy(x, y)(h, k) = k.
\]
2.5. **PRÁCE A MECHANICKÁ ENERGIE**

Úplný diferenciál libovolné diferencovatelné funkce proto můžeme zapsat pomocí diferenciálů souřadnicových funkcí ve tvaru

\[df(x, y) = \frac{\partial f(x, y)}{\partial x} \, dx + \frac{\partial f(x, y)}{\partial y} \, dy, \]

zkráceně

\[df = \frac{\partial f}{\partial x} \, dx + \frac{\partial f}{\partial y} \, dy. \tag{2.46} \]

Po delší matematické vůli se vracíme k problému nezávislosti práce síly na trase křivky, po níž se pohybuje její původním. Předpokládejme, že složky rovinné síly \(F(t) = (F_1(x, y), F_2(x, y)) \) nejsou nezávislé, ale jsou odvozovány jednotlivé složky kmenové funkce \(f(x, y) \) takto:

\[F_1(x, y) = \frac{\partial f(x, y)}{\partial x}, \quad F_2(x, y) = \frac{\partial f(x, y)}{\partial y}. \]

Je-li parametrické vyjádření křivky \(C \) dáno funkcemi \(x = x(t), \; y = y(t), \; t \in [a, b] \), je práce síly \(\vec{F} \) po této křivce rovna podle vztahu (2.36)

\[A_C = \int_C \vec{F} \, d\vec{r} = \int_a^b \left[\frac{\partial f(x(t), y(t))}{\partial x} \dot{x}(t) + \frac{\partial f(x(t), y(t))}{\partial y} \dot{y}(t) \right] dt. \]

Podle pravidla pro derivaci složené funkce je třeba, že integrand je derivace funkce \(F(t) = f(x(t), y(t)) \), tj.

\[A_C = \int_a^b \dot{F}(t) \, dt = F(b) - F(a) = f(\tilde{x}(\beta), \tilde{y}(\beta)) - f(\tilde{x}(\alpha), \tilde{y}(\alpha)) = f(\vec{r}(\beta)) - f(\vec{r}(\alpha)), \]

kde \(\vec{r}(\alpha) \), resp. \(\vec{r}(\beta) \) je počáteční, resp. koncový bod křivky \(C \). Tvar křivky tedy nemá vliv na hodnotu vykonané práce. Silové pole \(\vec{F}(\vec{r}) \), jehož složky jsou parciálními derivacemi jisté funkce \(f(\vec{r}) \), je proto konzervativní. Platí také obrácené tvrzení — každé konzervativní vektorové pole je odvozeno od jisté kmenové funkce pomocí parciálních derivací. Vektor určený parciálními derivacemi funkce \(f(\vec{r}) \) se nazývá **gradient funkce** \(f \). Podobně závěr platí pro funkci tři proměnných — silové pole \(\vec{F}(\vec{r}) = (F_1(x, y, z), F_2(x, y, z), F_3(x, y, z)) \) je konzervativní právě když existuje funkce \(f(\vec{r}) = f(x, y, z) \) taková, že platí

\[\vec{F}(\vec{r}) = \left(\frac{\partial f(x, y, z)}{\partial x}, \; \frac{\partial f(x, y, z)}{\partial y}, \; \frac{\partial f(x, y, z)}{\partial z} \right) = \text{grad } f(\vec{r}). \tag{2.47} \]

Výraz pro elementární práci síly \(\vec{F}(\vec{r}) \) je v takovém případě úplným diferenciálem kmenové funkce \(f(\vec{r}) \),

\[\delta A = F_1 \, dx + F_2 \, dy + F_3 \, dz = \frac{\partial f(x, y, z)}{\partial x} \, dx + \frac{\partial f(x, y, z)}{\partial y} \, dy + \frac{\partial f(x, y, z)}{\partial z} \, dz. \]

Funkce \(U(\vec{r}) = -f(\vec{r}) \) se podobně jako v případě centrálního silového pole nazývá **potentialní energie**. Vzniká již ještě jeden problém. Jak podle složek zadanej síly poznáme, zda jsou parciálními derivacemi nějakého vektorového fieldu? Samozřejmě můžeme postupovat tak, že budeme kmenovou funkci rotovat hledat. Zvolíme však jednodušší způsob, který umožní o existenci kmenové funkce rozhodnout předem. Předpokládejte, že rovinné silové pole \(\vec{F}(\vec{r}) \) je konzervativní, tj.

\[F_1(x, y) = \frac{\partial f(x, y)}{\partial x}, \quad F_2(x, y) = \frac{\partial f(x, y)}{\partial y}, \]

a derivujme složku \(F_1 \) podle \(y \) a složku \(F_2 \) podle \(x \). Dostaneme

\[\frac{\partial F_1(x, y)}{\partial y} = \frac{\partial^2 f(x, y)}{\partial y^2}, \quad \frac{\partial F_2(x, y)}{\partial x} = \frac{\partial^2 f(x, y)}{\partial x^2}. \]
Smíšené parcimon dérive jsou vždy, za předpokladu jejich spojitosti, závislé na

\[
\frac{\partial F_1(x, y)}{\partial y} = \frac{\partial F_2(x, y)}{\partial x},
\]

pro prostorevé silové pole pak

\[
\frac{\partial F_1(x, y)}{\partial x} - \frac{\partial F_2(x, y)}{\partial y} = 0, \quad \frac{\partial F_3(x, y)}{\partial z} = 0, \quad \frac{\partial F_1(x, y)}{\partial x} = 0, \quad \frac{\partial F_1(x, y)}{\partial y} = 0.
\]

(2.48)

Vektorové pole

\[
\mathbf{\text{rot}} \mathbf{F}(\mathbf{r}) = \left(\frac{\partial F_3(x, y)}{\partial z} - \frac{\partial F_3(x, y)}{\partial z}, \quad \frac{\partial F_2(x, y)}{\partial y} - \frac{\partial F_2(x, y)}{\partial y}, \quad \frac{\partial F_1(x, y)}{\partial x} - \frac{\partial F_1(x, y)}{\partial x} \right)
\]

je nazývá rotace vektorového pole \(\mathbf{F} \). V rámci po užívání k přístupu k konzervativním, neboť je gradientem kmenové funkce \(f(x, y) = x^2 y^2 \). Odporučí potenciální energii \(U(x, y) = -x^2 y^2 + \text{konst.} \) (kmenové funkce se mohou lišit o integrační konstantu).

Připojme, že homogenní silové pole, centrální silové pole i silové pole po-pisující pružnou sílu jsou pouze speciálními případy konzervativních silových polí.

Příklad 2.28. Práce Lorentzovy síly.

Uvažujme ještě o práci magnetického pole o obecně zadané indukci \(\mathbf{B}(\mathbf{r}, t) \). Odporučařící Lorentzova síla působící na nabíjenou částic je dána vztahem (2.7), \(\mathbf{F} = q(\mathbf{v}) \times \mathbf{B} \), není vektorovým polem ve smyslu matematické definice — závisí totiž na rychlosti a v nejbohemějším případě i explicitně na čase. Pro její práci platí

\[
A_C = \int_C q(\mathbf{v} \times \mathbf{B}) \, d\mathbf{r} = q \int_{\alpha}^{\beta} (\mathbf{v} \times \mathbf{B}) \mathbf{v} \, dt = 0.
\]

Vzhledem k tomu, že magnetická síla je vždy kolmá k rychlosti, je její elementární, a tedy i celková práce po jakékoli křivce nulová.

2.5.3 Kineticí energie

Definici veličiny zvané kinetická energie zná nepochybně každý, kdo se v nějaké podobě seškol s fyzikou. Pro částic o hmotnosti \(m \) a rychlosti \(\mathbf{v} \), resp. pro soustavu \(N \) částic o hmotnostech \(m_j \) a rychlostech \(\mathbf{v}_j \) je dána vztahem

\[
E_k = \frac{1}{2} m v^2, \quad \text{resp.} \quad E_k = \sum_{j=1}^{N} \frac{1}{2} m_j v_j^2.
\]

Jaké fyzikální důvody však vedou k zavedení nové veličiny právě tímto způsobem? V předchozím odstavci jsme definovali a počítali práci libovolně ze sil,
2.5. **PRÁCE A MECHANICKÁ ENERGIE**

působících na částicí při jejím pohybu po trajektorii. Otázka, jakou práci vykonalá všechny síly působící na částici, má jednoduchou odpověď — sečteme práci jednotlivých sil. Ukáže se však, že tato procedura povede práve k zavedení kinetické energie. Předpokládejme, že na částici o hmotnosti \(m \) pohybující se po trajektorii \(C \) s parametrickým vyjádřením \(x = x(t), y = y(t), z = z(t), t \in [\alpha, \beta] \) působí síly \(\vec{F}_1, \vec{F}_2, \ldots, \vec{F}_K \). Jejich celková práce je

\[
A_C = \int_C \vec{F}_1 \, d\vec{r} + \cdots + \int_C \vec{F}_K \, d\vec{r} = \sum_{\gamma=1}^{K} \int_C \vec{F}_\gamma \, d\vec{r}.
\]

Všechny integrály mají týž integrační obor a stejnou integrační proměnnou \(\vec{r} \), můžeme je proto snadno sečíst:

\[
A_C = \int_C \left(\sum_{\gamma=1}^{K} \vec{F}_\gamma \right) \, d\vec{r} = \int_C \vec{\gamma}(\vec{r}(t)) \, \vec{v}(t) \, dt.
\]

Součet sil ovšem představuje jejich výsledníci, a ta je podle druhého Newtonova zákona rovna součtu hmotnosti a zrychlení částice. Platí proto

\[
A_C = \int \left(\sum_{\gamma=1}^{K} \vec{\gamma} \right) \vec{v}(t) \, dt = \int \left(\sum_{\gamma=1}^{K} \vec{\gamma} \right) dt = \frac{1}{2}mv^2(t) \bigg|_{\alpha}^{\beta} = \frac{1}{2}mv^2(\beta) - \frac{1}{2}mv^2(\alpha).
\]

Získali jsme zajímavý výsledek — zatímco práce jednotlivých sil působících na částici obecně závisí na tom, po jaké konkrétní trajektorii se částice pohybuje, tj. jakými mechanickými stavy prochází (závislost mizí ve specifických případech — v konzervativních silových polích), je práce, kterou vykonává všechny síly dohromady závislá pouze na rychlosti odpovídajících počátečním a koncovým stavu, a to bez ohledu a konkrétní typ a vyjádření jednotlivých sil tvořících výsledníci. Tento silný výsledek má fyzikální podstatu — je důsledkem platnosti druhého Newtonova zákona. Veličinu, jejíž hodnoty v koncovém a počátečním stavu určují práci vykonanou všemi silami působícími na částici, nazýváme kinetickou energie částice. Platí

\[
E_k = \frac{1}{2}mv^2, \quad A_C = \sum_{\gamma=1}^{K} \int_C \vec{\gamma} \, d\vec{r} = \Delta E_k = E_k(2) - E_k(1),
\]

kde \(E_k(1) \), resp. \(E_k(2) \) je kinetická energie částice v počátečním, resp. koncovém stavu (odpovídajícím počátečním, resp. koncovému bodu trajektorie).

Příklad 2.29. Zachování mechanické energie.

Uvažujme o částici, která se pohybuje po trajektorii \(C \) v konzervativním silovém poli \(\vec{F}(\vec{r}) \) a jiné síly na ní nepůsobí. Potenciální energii odpovídající danému silovému poli označme \(U(\vec{r}) \). Počáteční stav částice označme \((\vec{r}_1, \vec{v}_1) \) a koncový
(\vec{r}_2, \vec{v}_2), \text{ tj. pro } t \in [\alpha, \beta] \text{ je s ohledem na dřívější značení } \vec{r}(\alpha) = \vec{r}_1, \vec{v}(\alpha) = \vec{v}_1, \vec{r}(\beta) = \vec{r}_2, \vec{v}(\beta) = \vec{v}_2. \text{ Podle definice kinetické energie platí}

\[E_k(2) - E_k(1) = \int \vec{F} \, d\vec{r} = -U(\vec{r})|_{\vec{r}_1}^{\vec{r}_2} = U(\vec{r}_1) - U(\vec{r}_2) \implies \]

\[\implies E_k(1) + U(\vec{r}_1) = E_k(2) + U(\vec{r}_2) \implies E_k + U(\vec{r}) = \text{konst.} \quad (2.50) \]

Při polynu částice v homogenním gravitačním poli Země o třetním zrychlení \(\ddot{g} \), resp. v centrálním gravitačním poli vytvářeném tělesem o hmotnosti \(M \) má vztah (2.50) tvar, který si sami snadno odvodíte,

\[\frac{1}{2} m v^2 + mgh = E_0, \quad \text{resp.} \quad \frac{1}{2} m v^2 - \kappa \frac{M}{r} = E_0, \quad E_0 = \text{konst.,} \]

kde \(h \) je výška částice nad povrchem Země, \(r \) je vzdálenost částice od centra \(M \) (obvykle počítáme soustavy souřadnic).

Vztah (2.50), odvozený v předchozím příkladu, je formálně velmi jednoduchý, má však značný fyzikální i praktický význam:

ZÁKON ZACHOVÁNÍ MECHANICKÉ ENERGIE V KONZERVATIVNÍM POLI

Součet kinetické a potenciální částice v konzervativním silovém poli, tj. mechanické energie, je stálý. Kinetická energie se mění na úkor energie potenciální.

Vztah (2.50) je nejjednodušší, a ne zeča přesnou podobou zákona zachování mechanické energie. Aproximativní přístup spočívá v tom, že předpokládáme, že silové pole \(\vec{F}(\vec{r}) \) není nijak ovlivněno tím, že se v něm polychuje „testovací částice“. Přesně vzato je silové pole vytvářeno okolními částicemi, které na testovací částici silové působí. Toto působení je však podle třetího Newtonova zákona vzájemné. Uvážíme-li nejjednodušší případ, centrální silové pole, měli bychom při přesných úvahách respektovat skutečnost, že díky vzájemnému ovlivňování částic \(m \) a \(M \) je vztahová stávající spjatá s \(M \) ve skutečnosti neinerciální. Míra její neinerciálnosti, a tedy i míra nečinnosti vztahu (2.50), je dána poměrem hmotností \(m \) a \(M \). Podrobně se budeme tomuto problému věnovat v odstavci 3.1.4.
Kapitola 3
Mechanika soustav částic

V předchozí kapitole jsme se zabývali pohybem tělesa modelovaného hmotným bodem (a nazývaného též částicí) a příčinami tohoto pohybu. Formulovali jsme základní principy mechaniky — Newtonovy zákony a odvodili jejich důležité důsledky týkající se právě pohybu jedné částice. V této kapitole budou objekty, jejichž pohyby studujeme, již obecnější. Půjde o tělesa s neznačně velkými rozměry, a to jak s diskretním, tak se spojitým rozložením hmotností. V odstavek 1.1 jsme definovali rozložení hmotnosti pro diskretní případ jako soubor \(\{m_i, \vec{r}_i\} \), kde index \(i \in \{1, \ldots, N\} \) čísluje jednotlivé hmotné body, z nichž je těleso složeno. Pro spojitý případ charakterizovala rozložení hmotnosti hustota tělesa \(g(\vec{r}) \). Základní charakteristiky spjaté s rozložením hmotnosti, celkovou hmotnost, polohu středu hmotnosti (a pro druhé čtení také tenzor momentu sestavačnosti), jsme rovněž definovali v odstavci 1.1.

3.1 Impulsové věty a zákony zachování

Uvažujeme o soustavě \(N \) hmotných bodů (částic). Rozložení hmotnosti v této soustavě je v každém okamžiku popsáno souborem \(\{m_i, \vec{r}_i\} \) (viz Obr. 1.1). Hmotnosti částic \(m_i \) považujeme za konstantní, polohové vektory \(\vec{r}_i \) jsou vztaženy vzhledem i interciální vztažné soustavě. Je samozřejmé, že pro každou částečnou soustavy platí Newtonovy zákony. Abychom je mohlí aplikovat, je třeba posoudit všechny sily, jimiž na každou částicí působí objekty, které tvoří její okolí. Tyto objekty lze rozdělit do dvou kategorií:

- objekty náležející zvolené soustavě částic, tj. přímo samy částice dané soustavy,
objekty mimo tuto soustavu, pro jednoduchost předpokládejme, že se jedná o \(K \) hmotných bodů (částic) o konstantních hmotnostech \(M_\gamma, \gamma \in \{1, \ldots, K\} \), a polohových vektorech \(\vec{R}_\gamma \).

Situaci znázorňuje Obr. 3.1.

Obr. 3.1: Popis silového působení v soustavě částic

Popíšeme nyní silové působení na \(i \)-tou částici soustavy.

• Silové působení částic první kategorie — vnější síly: Na \(i \)-tou částici soustavy působí \(j \)-tá částice soustavy sílou \(\vec{F}^{\text{int}}_{ji} \), kde \(j \in \{1, \ldots, N\} \), přičemž platí \(\vec{F}^{\text{int}}_{ji} = -\vec{F}^{\text{int}}_{ij} \) (třetí Newtonův zákon) a \(\vec{F}^{\text{int}}_{ii} = 0 \) (částice sama na sebe nepůsobí).

• Silové působení částic druhé kategorie — vnější síly: Na \(i \)-tou částici soustavy působí \(\gamma \)-tá částice jejího okolí sílou \(\vec{F}^{\text{ext}}_{\gamma i} \), kde \(\gamma \in \{1, \ldots, K\} \). (Podle třetího Newtonova zákona působí \(i \)-tá částice soustavy na \(\gamma \)-tou částici okolí sílou \(\vec{F}^{\text{ext}}_{\gamma i} = -\vec{F}^{\text{ext}}_{\gamma i} \). Tato síla však působí na soustavu tvořící okolí, takže do formulace druhého Newtonova zákona pro naší soustavu nebude započtena.

Pohybová rovnice \(i \)-té částice soustavy má tvar

\[
\frac{d\vec{p}_i}{dt} = \sum_{j=1}^{N} \vec{F}^{\text{int}}_{ji}(\vec{r}_{ji}, \vec{v}_{ji}, t) + \sum_{\gamma=1}^{K} \vec{F}^{\text{ext}}_{\gamma i}(\vec{r}_i - \vec{R}_\gamma, \vec{v}_i - \vec{V}_\gamma, t),
\]
3.1. IMPULSOVÉ VĚTY A ZÁKONY ZACHOVÁNÍ

\[m_i \ddot{r}_i = \sum_{j=1}^{N} F_{ji}^{\text{int}}(r_{ji}, \dot{r}_{ji}, t) + \sum_{\gamma=1}^{K} F_{\gamma i}^{\text{ext}}(r_i - \bar{R}_\gamma, \dot{r}_i - \dot{\bar{R}}_\gamma, t), \quad i \in \{1, \ldots, N\}. \]

(3.1)

Může se zdát, že nyní již stačí zapsat silové zákony popisující jednotlivé interakce a řešit soustavu \(N \) vektorových rovnic o \(N \) neznámých vektorových funkcích \(\ddot{r}_i \). Tato představa je sice principiálně správná, ale nerealizovatelná. Překlážky jsou zejména následující:

- Museli bychom znát časový vývoj stavu částic okolí, tj. časové závislosti \(\bar{R}_\gamma(t) \) (rychlosti \(\dot{V}_\gamma(t) \) bychom získali derivováním).

- Museli bychom znát soubor počátečních podmínek \(\{\bar{r}_i(0), \dot{\bar{r}}_i(0)\} \) pro všechny částice soustavy.

- Je známo a dokázáno, že analytický lze řešit nanejvším tzv. problém dvou těles. Pro \(N \geq 3 \) je nutné přistoupit k numerické řešení.

- Pro větší počet částic může být i numerické řešení neschůdné pro velkou náročnost na kapacitu paměti počítače nebo a výpočetní čas.

Z výše uvedených důvodů, ale i z obecného hlediska má smysl pokusit se definovat veličiny, které se vztahují nikoli k jednotlivým částicím, ale k soustavě jako celku, a sledovat jejich časový vývoj. Jsou jimi celková hybnost, celkový moment hybnosti, a popřípadě i celková mechanická energie, pokud jsou sily působící v soustavě konzervativní. Problematikou těchto „globálních“ veličin se zabývají následující odstavce.

3.1.1 První impulsová věta

Celkovou hybnost soustavy definujeme příročeným způsobem jako vektorový součet hybností všech částic,

\[\bar{p}_0 = \sum_{i=1}^{N} \bar{p}_i = \bar{p}_1 + \bar{p}_2 + \cdots + \bar{p}_N. \]

(3.2)

Pro její časovou derivaci platí

\[
\dot{\bar{p}}_0(t) = \frac{d}{dt} \sum_{i=1}^{N} \bar{p}_i = \sum_{i=1}^{N} \left(\sum_{j=1}^{N} F_{ji}^{\text{int}} + \sum_{\gamma=1}^{K} F_{\gamma i}^{\text{ext}} \right) = \\
= \sum_{i=1}^{N} \sum_{j=1}^{N} F_{ji}^{\text{int}} + \sum_{i=1}^{N} \sum_{\gamma=1}^{K} F_{\gamma i}^{\text{ext}} = F^{\text{int}} + F^{\text{ext}}.
\]

POZNÁMKA: Pro těleso se spojitě poměrně měnití je celková hybnost rovněž „součtem“ hybností jednotlivých množin elementů tělesa, tj. integrálem

\[
\bar{p}_0(t) = \int_{V} q(\vec{r}, t) \vec{v}(t) \, dV.
\]
Zdá se, že jsme neobjevili nic nového — časová derivace celkové hybnosti soustavy je rovná výslednicí všech síl, které působí na částice soustavy, a to jak „zvenčí“, tak „zvenku“. Přečte se však dále předchozí vztah zjednodušit, určitě zmenšit síly platnost třetího Newtonova zákona. Jako \(\vec{F}_{\text{int}} = \sum_{i=1}^{N} \sum_{j=1}^{N} \vec{F}_{ij} \) („modrá suma“) jsme označili výslednici vnějších síl, působících na částice soustavy. Sčítá se přes všechny dvojice indexů \(i, j \in \{1, \ldots, N\} \). S každou dvojicí pevně zvolených indexů \(i, j \) je v součtu oba členy, jako síla \(\vec{F}_{ij} \), tak síla \(\vec{F}_{ji} \). Platí však \(\vec{F}_{ij} + \vec{F}_{ji} = \vec{0} \), proto \(\vec{F}_{ij} = -\vec{F}_{ji} \). Derivace celkové hybnosti je proto rovná výslednicí vnějších síl působících na částice soustavy. Použitím druhého a třetího Newtonova zákona jsme tak dostali nový výsledek, který má charakter odvozeného tvrzení — první impulsovou větu

První impulsová věta

Časová derivace celkové hybnosti soustavy částice je rovná výslednicí vnějších síl, tj. těch, jimiž na částice soustavy působí její okolí. Platí

\[
\frac{d\vec{p}}{dt} = \vec{F}_{\text{ext}},
\]

kde \(\vec{F}_{\text{ext}} \) je výslednice (vektorový součet) všech vnějších síl.

První impulsová věta má formálně tvar druhého Newtonova zákona: Představme si „náhradní“ částici, jejíž hmotnost je \(m_0 = \sum_{i=1}^{N} \) a hybnost je rovna celkové hybnosti soustavy, tj. \(\vec{p}_0 \). Působí-li na tuto částici její okolí silní tak, že jejich výslednice je \(\vec{F}_{\text{ext}} \), bude druhý Newtonův zákon zaplněn úplně stejně jako první impulsová věta pro soustavu, kterou náhradní částice z hlediska celkové hybnosti zastupuje. Jde však o formální shodu — v první impulsové větě je, jak víme, oba členy, a třetí Newtonův zákon, díky němuz se neuplatní vnější síly soustavy.

Definujme ještě veškeré přirozené způsobem rychlost náhradní částice jako podíl její hybnosti a hmotnosti,

\[
\vec{v}_0 = \frac{\vec{p}_0}{m_0} = \frac{m_1 \vec{v}_1 + \cdots + m_N \vec{v}_N}{m_1 + \cdots + m_n},
\]

resp.

\[
\vec{v}_0 = \frac{\vec{p}_0}{m_0} = \frac{\int \varrho \vec{v} \, dV}{\int \varrho \, dV},
\]

pro těleso s diskrétním, resp. spojitém rozložením hmotnosti. Podobný vztah jsme jině viděli v odstavci 1.1. Konkrétně šlo o vztah (1.2) pro polohu středu hmotnosti soustavy. Integraci právě zavedeného vztahu pro rychlost náhradní částice dostaneme její polohu ve tvaru

\[
\vec{r}_0 = \frac{m_1 \vec{r}_1 + \cdots + m_N \vec{r}_N}{m_1 + \cdots + m_n} + \text{konst.},
\]
3.1. IMPULSOVÉ VĚTY A ZÁKONY ZACHOVÁNÍ

ccož je polohový vektor středu hmotnosti až na konstantní vektor. Náhradních částic z hlediska první impulsové věty je tedy nekončeně mnoho. Pro volbu konkrétní z nich nemáme zatím další kritérium, proto zvolme za integrační konstantu nulový vektor a náhradní částici ztotožněme se středem hmotnosti. V dalších odstavcích uvádíme, že tato volba má i důležitý fyzikální význam.

Zvláštní situace nastává, jestliže se všechny vnější síly, jimiž okolí působí na soustavu, navzájem kompenzují — jejich výslednicí je nulová. Podle první impulsové věty je pak derivace celkové hybnosti nulová a celková hybnost konstantní. Soustava se řídí zákonem zachování hybnosti. Konstantní je samozřejmě i rychlost \mathbf{v}_b, střed hmotnosti soustavy se pohybuje rovnoměrně přímočaré.

POZNÁMKA: Již v tuto chvíli můžeme usuzovat na zvláštní význam středu hmotnosti — zatímco polohy jednotlivých částic může být i při nulové výslednici vnějších síl obecný, je poloha středu hmotnosti jako „náhradní částice“ z hlediska první impulsové věty rovnoměrný a přímočarý. Příkladem může být třeba třešeň, která je umístěna na stojanu spočívajícího třešeň na stole a rotuje kolem pevné ose za idealizovaných podmínek, kdy rotace není brzděna třením (setračník): vnějšími silami jsou tříkové síly, tlakové síly podložky a podpřípadě statické třeče síly, které se kompenzují, střed hmotnosti třešle je v klišku a jednotlivé hmotné elementy třešle opisují kružnice.

Nejednodušší situace, při něž se zachovává celková hybnost soustavy, je taková, kdy okolí nepůsobí na částice soustavy víbrec žádnými silami. Taková soustava se nazývá izolovaná a hovoříme o zákonu zachování hybnosti izolované soustavy.

3.1.2 Druhá impulsová věta

Momenty vektorových veličin

Momenty hybnosti částice vzhledem k bodu O, resp. moment síly vzhledem k bodu O jsou definovány vztahy
\[\vec{\ell} = \vec{r} \times \vec{p}, \quad \vec{M} = \vec{r} \times \vec{F}, \]
(3.4)

kde význam veličin je zřejmý z Obr. 3.2. \(\vec{F} \) je polohový vektor částice o hybnosti \(\vec{p} \), resp. polohový vektor působící síly \(\vec{F} \) vzhledem k vztáhněnému bodu O.

Celkový moment hybnosti soustavy \(N \) částic s rozložením hmotnosti \(\{ m_i, \vec{r}_i \} \) o rychlostech \(\vec{v}_i \) definujeme, podobně jako u hybností, jako součet „jednočásticových“ momentů hybnosti, vztáhněných samozřejmě k těmuž bodu O, k němuž vztahujeme celkový moment hybnosti,
\[\ell_0 = \sum_{i=1}^{N} \vec{r}_i \times \vec{p}_i = \sum_{i=1}^{N} \vec{r}_i \times m_i \vec{v}_i = \vec{r}_1 \times m_1 \vec{v}_1 + \cdots + \vec{r}_N \times m_N \vec{v}_N. \]
(3.5)

Zajímáme se opět o jeho časovou změnu, tj.
\[\dot{\ell}_0 = \frac{d}{dt} \sum_{i=1}^{N} \vec{r}_i \times m_i \vec{v}_i = \sum_{i=1}^{N} \frac{d}{dt} (\vec{r}_i \times m_i \vec{v}_i) = \]
\[= \sum_{i=1}^{N} \vec{r}_i \times (\dot{\vec{p}}_i) + \vec{r}_i \times \vec{\dot{p}}_i = \sum_{i=1}^{N} \vec{r}_i \times \left(\sum_{j=1}^{N} F_{ji}^{\text{int}} + \sum_{\gamma=1}^{K} F_{\gamma i}^{\text{ext}} \right) = \]
\[= \sum_{i=1}^{N} \sum_{j=1}^{N} F_{ji}^{\text{int}} + \sum_{i=1}^{N} \sum_{\gamma=1}^{K} F_{\gamma i}^{\text{ext}} = \vec{M}^{\text{int}} + \vec{M}^{\text{ext}}. \]

Při výpočtech jsme vzali v úvahu skutečnost, že \(\dot{\vec{r}}_i = \vec{v}_i \), a proto je vektorový součin \(\vec{r}_i \times \vec{p}_i = \vec{r}_i \times m_i \vec{v}_i \) nulový. Veličina \(\vec{M}^{\text{int}} \) představuje vektorový součet všech momentů síl působících v uvnitř soustavy, tj. výsledný moment vnějších sil, \(\vec{M}^{\text{ext}} \) je součtem momentů sil, jimiž na částice soustavy působí její okolí, tj. výsledný moment vnějších sil.
3.1. IMPULSOVÉ VĚTY A ZÁKONY ZACHOVAŇÍ

POZNÁMKA: Pro případ tělesa s diskrétním rozložením hmotnosti platí

\[\tilde{F}_0(t) = \int_V \tilde{r} \times \varrho(\tilde{r}, t) \tilde{r} \mathrm{d}V. \]

Podobně jako v předchozím odstavci se nyní zaměříme na zjištění, zda třetí Newtonův zákon, týkající se vzájemného silového působení částic, povede k nějakému zjednodušení výrazu pro výsledný moment vnějších sil. Výraz pro něj podrobněji rozepsíme, s uvážením již dříve konstatované skutečnosti, že \(\tilde{F}_{ni} = 0 \):

\[\tilde{M}^{int} = \sum_{i=1}^{N} \sum_{j=1}^{N} \tilde{F}_{ji}^{int} = \]

\[= \left(\tilde{r}_1 \times \tilde{F}_{12}^{int} + \cdots + \tilde{r}_1 \times \tilde{F}_{1N}^{int} \right) + \cdots + \left(\tilde{r}_N \times \tilde{F}_{N1}^{int} + \cdots + \tilde{r}_N \times \tilde{F}_{NN}^{int} \right) = \]

\[= \left(\tilde{r}_1 \times \tilde{F}_{11}^{int} + \tilde{r}_2 \times \tilde{F}_{12}^{int} \right) + \cdots + \left(\tilde{r}_{N-1} \times \tilde{F}_{N,N-1}^{int} + \tilde{r}_N \times \tilde{F}_{NN}^{int} \right) = \]

\[= \sum_{i=1}^{N} \sum_{j=1,j<i}^{N} \left(\tilde{r}_i \times \tilde{F}_{ji}^{int} + \tilde{r}_j \times \tilde{F}_{ij}^{int} \right) = \]

\[= \sum_{i=1}^{N} \sum_{j=1,j<i}^{N} \left(\tilde{r}_i \times \tilde{F}_{ji}^{int} - \tilde{r}_j \times \tilde{F}_{ij}^{int} \right) \]

Vzájemné působení částic je však centrální, a proto jsou vektory \(\tilde{r}_i - \tilde{r}_j \) a \(\tilde{F}_{ji}^{int} \) rovnoběžné. Jejich vektorový součin je nulový a celkový moment vnějších sil rovnož. Výsledkem je další odvozené tvrzení — druhá impulsová věta:

DRUHÁ IMPULSOVÁ VĚTA

Časová derivace celkového momentu hybnosti soustavy částic je rovna výslednému momentu vnějších sil, tj. těch, jimiž na částice soustavy působí její okolí. Platí

\[\frac{d\tilde{M}}{dt} = \tilde{M}^{ext}, \quad (3.6) \]

kde \(\tilde{M}^{ext} \) je výsledný moment všech vnějších sil (vektorový součet jednotlivých momentů vnějších sil).

V případě, že jsou kompenzovány momenty vnějších sil, tj. výsledný moment vnějších sil působících na soustavu je nulový, je nulová i derivace celkového momentu hybnosti a celkový moment hybnosti se zachovává. Tento výsledek představuje zákon zachování momentu hybnosti soustavy částic. Podobně jako v případě zákona zachování hybnosti je nejednodušším soustavenou, jejíž celkový moment hybnosti se zachovává, izolovaná soustava (na částice soustavy nepůsobí
vůbec žádné vnější síly). Pak hovoříme o zákonu zachování momentu hybnosti izolované soustavy.

Obecně je možné, aby se celková hybnost soustavy nezachovávala a celkový moment hybnosti anebo možná je i opačná situace. Uvidíme to v následujících příkladech. V případě izolované soustavy platí oba zákony zachování, zachovává se tedy jak její celková hybnost, tak její celkový moment hybnosti.

Příklad 3.1. Hybnost a moment hybnosti při volném pádu.
Hmotný bod o hmotnosti m se pohybuje v homogenním gravitačním poli Země \vec{g} volným pádem (odpor prostředí zanedbáváme). Vypočteme derivaci jeho hybnosti a momentu hybnosti. Zvolme soustavu souřadnic nejprve obecně, podle obr. 3.3 vlevo.

Obr. 3.3: Moment hybnosti volně padajícího tělesa

Podle impulsových vět platí

\[\vec{p} = m \vec{g}, \quad \vec{\ell} = \vec{r} \times m \vec{g}, \]
3.1. IMPULSOVÉ VĚTY A ZÁKONY ZACHOVÁNÍ

odkud jednoduchou integrací dostaneme
\[\mathbf{p}(t) = (0, 0, -mgt), \quad \mathbf{l}(t) = (\ell_1(0) - mgt y(0), \ell_2(0) + mgt x(0), \ell_3(0)). \]

Vektor hybnost částice se s časem mění, moment hybnosti vzhledem k obecně zvolenému vztážnému bodu rovněž. Okamžitou polohu částice zjistíme integrací rychlosti. Dostaneme očekávanou závislost
\[\mathbf{r}(t) = \left(x(0), y(0), z(0) - \frac{1}{2}gt^2\right). \]

Volbou vztážného bodu v kterékoliv poloze na přímce \(q \), po níž částice padá k zemi, docílíme toho, že moment hybnosti částice bude konstantní, neboť při takové volbě vztážného bodu je moment tříhouvedly sily (a současně tedy i celkový moment vnějších sil) trvale nulový. Dokonce platí \(\mathbf{l}(0) = 0 \), a tedy i \(\ell(t) = 0 \). ♠

Příklad 3.2. Hybnost a moment hybnosti při rotačním pohybu

Homogenní válce rotuje kolem své geometrické osy a je roztáčen dvojitou lanou navinutou na jeho obvod (Obr. 3.4).

Obr. 3.4: Momenty hybnosti rotujícího válce

Předpokládejme, že lana po obvodu válce neklouzou a působí na válcov silami \(\mathbf{F} \) a \(-\mathbf{F} \). Pro jednoduchost zvolme vztážný bod \(O \) na osi válce v rovině určené silami \(\mathbf{F} \) a \(-\mathbf{F} \). Působí sil jsou v bodech položených na obvodu válce symetricky vůči jeho osi. Podle obrázku zvolme také soustavu souřadnic, osa \(x \) je souhlasné rovnoběžná s osou rotační válce. Pohybov vektor působí sily \(\mathbf{F} \) je \(\mathbf{r} \), pohybov vektor působí sily \(-\mathbf{F} \) je \(-\mathbf{r}\). Podle první, resp. druhé impulsových věty platí
\[\mathbf{p} = \mathbf{F} - \mathbf{F} = 0, \quad \mathbf{l} = \mathbf{r} \times \mathbf{F} + (-\mathbf{r}) \times (\mathbf{F}) = 2\mathbf{r} \times \mathbf{F} = (0, 0, 2Fr). \]
Celková hybnost válců se zachovává, celkový moment hybnosti v závislosti na čase dostaneme integrací vektoru \(\vec{\ell} \), tj. \(\vec{\ell}(t) = \ell_1(0), \ell_2(0), \ell_3(0) + 2Fr(t) \), a při volbě \(\vec{\ell}(0) = \vec{0} \) pak \(\ell(t) = (0, 0, 2Fr(t) \).

\[\text{♠} \]

3.1.3 Střed hmotnosti a jeho význam

S pojmem středu hmotnosti jsme se setkali již dvakrát. Nejprve v odstavci 1.1, kde jsme jej zavedli pro těleso s diskrétním, resp. spojitém rozložením hmotnosti vztahem (1.2), resp. (1.7), podruhé v odstavci 3.1.1 v souvislosti s celkovou hybností tělesa a s ni spojenou rychlostí „náhradní částice“. Při integraci této rychlosti se objevila (vektorová) integrační konstanta, kterou jsme zvolili nulou. Touto volbou, pro niž jsme ovšem neměli žádný fyzikální důvod, docílili jsme ji však shody vztahu pro polohu náhradní částice s polohou středu hmotnosti. Pro takovou volbu však fyzikální důvody existují. Jejich podstata spočívá v druhé impulzové větě, popřípadě v momentové rovnosti.

Příklad 3.3. Náhradní působení homogenní tihové síly.

Soustava \(N \) částic je umístěna v homogenním tihovém poli o tihovém zrychlení \(\vec{g} \) (viz Obr. 3.5).

\[\text{♠} \]

![Obr. 3.5: Těleso v homogenním tihovém poli](image)

V levé části obrázku je těleso s diskrétním rozložením hmotnosti (soustava \(N \) částic o hmotnostech \(m_i \) a polohových vektorech \(\vec{r}_i \), \(i = 1, 2, \ldots, N \)). Na jednotlivé částice působí tihové pole sílami \(\vec{G}_i = m_i\vec{g} \). Celková tihová síla je...

\[\text{♠} \]
3.1. **Impulsové věty a zákony zachování**

\[\vec{G} = \sum_{i=1}^{N} m_i \vec{g} \]

Z hlediska první impulsové věty můžeme soubor jednotlivých sil nahradit silou \(\vec{G} \), tj.

\[\dot{\vec{p}} = \sum_{i=1}^{N} m_i \vec{g} = \vec{G} \]

Vzniká otázka, do kterého bodu je třeba umístit „náhradní sílu“ \(\vec{G} \), aby její účinek z hlediska druhé impulsové věty byl stejný, jako účinek všech sil dříve \(\vec{G}_i \). Znamená to najít působiště náhradní síly tak, aby její moment vzájemněm bodu \(O \) byl stejný, jako výsledný moment všech sil vzájemně k tomuto bodu, tj.

\[\vec{r}_0 \times \vec{G} = \sum_{i=1}^{N} \vec{r}_i \times \vec{G}_i \implies \vec{r}_0 \times m \vec{g} = \sum_{i=1}^{N} \vec{r}_i \times m_i \vec{g}. \]

Úpravou pohybového vztahu dostaneme

\[\vec{r}_0 \times \vec{g} = \frac{m_1 \vec{r}_1 + \cdots + m_N \vec{r}_N}{m} \times \vec{g}, \]

ve sloučených v soustavě souřadnic zvolené podle obr. 3.5, v něž je \(\vec{g} = (0, 0, -g) \) pak

\[(-gy_0, gx_0, 0) = \left(-\frac{m_1 y_1 + \cdots + m_N y_N}{m_1 + \cdots + m_N} g, \frac{m_1 x_1 + \cdots + m_N x_N}{m_1 + \cdots + m_N} g, 0 \right), \]

tj.

\[x_0 = \frac{m_1 x_1 + \cdots + m_N x_N}{m_1 + \cdots + m_N}, \quad y_0 = \frac{m_1 y_1 + \cdots + m_N y_N}{m_1 + \cdots + m_N}, \quad z_0 \text{ libovolné}. \]

Obdobné úvahy pro případ tělesa se spojíte rozloženou hmotností vedou k výsledku

\[x_0 = \frac{1}{m} \int_V x \rho (\vec{r}) \, dV, \quad y_0 = \frac{1}{m} \int_V y \rho (\vec{r}) \, dV, \quad z \text{ libovolné}. \]

Působiště výslednice těžových sil tedy může být zvoleno kdekoli na svislé přímce procházející středem hmotnosti tělesa, daným vztahy (1.2), resp. (1.7).

Vzpomenejme-li si na experimentální středoškolský způsob určování působiště výslednice těžových sil zemského gravitační, které je v blízkosti povrchu Země ve velmi dobrém přibližení homogenní, může nás právě získaný výsledek poněkud překvapit. Toto působiště, nazývané těžištěm, jsme určovali pomocí těžnice. Těžnice se získává tak, že se těleso zavěsí na šňůru v libovolném bodě závěsu \(\vec{Z} \), napjatá šňůra pak představovala těžnici. Stačilo najít dvě těžnice a těžištěm byl jejich průsečík.
Je takový postup vůbec správný? Musí se dvě těžnice vůbec protínat? Co kdyby to byly mimoobžisky. A musí se tři a více těžnici různých směrů protínat v je-

V příkladu 3.3 jsme si částečně objasnili fyzikální význam středu hmotnosti tělesa jako „náhradního“ působiště výslednice elementárních tříhýd síl působících na těleso. Ve hře však stále zůstává jistá libovůle - umístění tohoto působiště na plochu procházející středem hmotnosti a rovnoběžně s tříhým zrychlením není jednoznačné. Nyní uvedeme fyzikální argumentaci, která již k jednoznačné volbě povede. Tato argumentace spočívá v druhé impulsové větě. Uvědomme si, že jsme ji formulovali v inerciální vztažné soustavě. V neinerci-
ální soustavě, kde se uplatňují fiktivní síly, bude o dost složitější, a to i pro tak specifický případ, jakým je tuhé těleso — uvědomte to v odstavci 3.2. Pokožme si však otázku, zda by třeba nebylo možné zvolit takovou neinerciální vzta-
žnou soustavu pohybující se vzhledem k inerciální soustavě pouze translačním pohybem, v nějž by formuľace druhé impulsové věty dopadla formálně stejně jako v soustavě inerciální. Nepochojně lze tušit, že odpověď bude souviset se stře-
dem hmotnosti. Skutečně, lze ukázat, že v neinerciální vztažné soustavě spojeně se středem hmotnosti tělesa, která vůči inerciálním vztažným soustavám koná pouze translační pohyb s unášovým zrychlením \(\ddot{A} \), má druhou impulsová věta stejný tvar jako v soustavách inerciálních.

Vážené se k Osn. 1.19, na němž jsou znázorněny vztažné soustavy \(S = O; \dot{e}_1, \dot{e}_2, \dot{e}_3 > \) a \(S' = O'; \dot{e}'_1, \dot{e}'_2, \dot{e}'_3 > \). Předpokládáme, že unášové zrychlení soustavy \(S' \) vzhledem k \(S \) je pouze translační, umožňuje větší \(\dot{e}_1 = \dot{e}'_1, \dot{e}_2 = \dot{e}'_2 \) a \(\dot{e}_3 = \dot{e}'_3 \). Pro pohybový vektor \(\dot{e}_3 \) částice
3.1. IMPULSOVÉ VĚTY A ZÁKONY ZACHOVÁNÍ

platí vztah (1.56), tj. \(\ddot{r}_i = \ddot{r}'_i + \ddot{R} \). Postupně vyjádříme moment hybnosti soustavy, jeho derivaci a výsledný moment v nějakém přípobíčku na soustavu pomocí čárkovaných veličin \(\ddot{r}'_i, \ddot{V}'_i, \ddot{A}'_i \).

Označení \(\ddot{R}, \ddot{V} \) a \(\ddot{A} \) má stejný význam jako v odstavci 1.4.3. Platí

\[
\ddot{r}_0 = \sum_{i=1}^{N} m_i \ddot{v}_i = \sum_{i=1}^{N} \left(\ddot{r}'_i + \ddot{R} \right) \times m_i \left(\ddot{v}'_i + \ddot{V} \right) = \\
= \sum_{i=1}^{N} r'_i \times m_i \ddot{v}'_i + \left(\sum_{i=1}^{N} m_i r'_i \times \ddot{V} \right) + \ddot{R} \sum_{i=1}^{N} m_i \ddot{v}'_i + m\ddot{R} \times \ddot{V}.
\]

\[
\frac{d\ddot{r}_0}{dt} = \frac{d\ddot{r}_0}{dt} + \left(\sum_{i=1}^{N} m_i \ddot{v}'_i \right) \times \ddot{V} + \left(\sum_{i=1}^{N} m_i r'_i \right) \times \ddot{A} + \ddot{V} \times \left(\sum_{i=1}^{N} m_i \ddot{v}'_i \right) + \\
= \ddot{R} \times \left(\sum_{i=1}^{N} m_i \ddot{v}'_i \right) + \ddot{V} \times \ddot{V} + \ddot{R} \times m\ddot{A} = \\
= \frac{d\ddot{r}_0}{dt} + \left(\sum_{i=1}^{N} m_i r'_i \right) \times \ddot{A} + \ddot{R} \times \left(\sum_{i=1}^{N} m_i \ddot{v}'_i \right) + \ddot{R} \times m\ddot{A},
\]

\[
\dot{M}^{ext} = \sum_{i=1}^{N} r'_i \times \dot{F}^{ext}_i = \sum_{i=1}^{N} \left(\ddot{r}'_i + \ddot{R} \right) \times \dot{\ddot{F}}^{ext}_i = (\dot{\dot{M}}^{ext})' + \ddot{R} \times \dot{\ddot{F}}^{ext}.
\]

V předchozím výpočtu jsme označili

\[
\ddot{r}_0 = \sum_{i=1}^{N} m_i \ddot{v}'_i, \quad \dot{M}^{ext} = \sum_{i=1}^{N} r'_i \times \dot{\ddot{F}}^{ext}_i,
\]

kde \(\dot{\ddot{F}}^{ext}_i \) je výslednice vnějších síl působících na \(i \)-tou části. Dosadíme-li výsledky do první impulsové věty \(\ddot{r}_0 = \dot{M}^{ext} \) a uvědomíme-li si platnost první impulsové věty

\[
\ddot{r}_0 = \dot{F}^{ext}_i, \quad \text{tj.} \quad \sum_{i=1}^{N} m_i \left(\ddot{v}'_i + \ddot{A} \right) = \sum_{i=1}^{N} \dot{F}^{ext}_i,
\]

(počopíteleře vzhledem k inerciální vztahy soustav \(S \), dostaneme)

\[
\frac{d\ddot{r}_0}{dt} = (\dot{M}^{ext})' + \left(\sum_{i=1}^{N} m_i r'_i \right) \times \ddot{A}. \tag{3.7}
\]

Požadujeme-li však formálně stejný tvar druhé impulsové věty také v soustavě \(S' \), musíme ji větší takt, aby platilo

\[
\left(\sum_{i=1}^{N} m_i r'_i \right) \times \ddot{A} = \ddot{A} = \ddot{0}. \tag{3.8}
\]

V ýahu připadá tyto možnosti:

- Unášivé zrychlení \(\ddot{A} \) je libovolné a platí

\[
\sum_{i=1}^{N} m_i r'_i = \ddot{0} \Rightarrow \sum_{i=1}^{N} m_i \left(\ddot{r}'_i - \ddot{R} \right) = \ddot{0} \Rightarrow \ddot{R} = \frac{m_1 \ddot{r}_1 + \cdots + m_N \ddot{r}_N}{m_1 + \cdots + m_N} = \ddot{r}_0.
\]

- Unášivé zrychlení \(\ddot{A} \) je nulové, tj. \(\ddot{A} = \ddot{0} \).
KAPITOLA 3. MECHANIKA SOUSTAV ČÁSTIC

- Unášivé zrychlení \(\ddot{\mathbf{A}} \) je trvale rovnoměrné s vektorem \(\sum_{i=1}^{N} m_i \mathbf{r}_i' \), takže splňuje rovnici

\[
\ddot{\mathbf{A}} = K \cdot \sum_{i=1}^{N} m_i \mathbf{r}_i' \implies \ddot{\mathbf{R}} + K \ddot{\mathbf{R}} = \sum_{i=1}^{N} m_i \mathbf{r}_i',
\]

kde \(K \) je nějaká konstanta.

Druhá možnost je nevyhovující, neboť pro \(\dot{\mathbf{A}} = 0 \) by soustava \(S' \) byla také intercelální a tak naše otázka nezní. Třetí možnost je nejlepší, významná by znázornivých závislostí \(\mathbf{r}_i(t) \) a řešení diferenčního rovnic druhého řádu pro neznámou vektovou veličinu \(\ddot{\mathbf{R}}(t) \) se však konstantou \(K \). Je to proto, že ve vztahu soustavy \(S' \), která je spojena se středem hmotnosti sledované soustavy částic, avšak nerokuje vůči inerciálním vztahům soustavám (unášivé zrychlení je pouze translační), lze s druhou impulzovou větou pracovat přesně stejným způsobem, jak v soustavě inerciální.

Význam středu hmotnosti lze po všech úvahách shrnout takto:

STŘED HMOTNOSTI

Střed hmotnosti tělesa s diskrétním, nebo spojitém rozložením hmotnosti má tyto vlastnosti:

- Je vůči svém průměrem polem částic, resp. objemových elementů tělesa — viz vztahy (1.2), resp. (1.7).

- Je možným působivému výsledně elementárních tříhodních sil, působících na částice, resp. elementy tělesa v homogenním tříhvom poli. Výslednice tříhodních sil tvůrčí do středu hmotnosti (obecnější do libovolného bodu na přístup těžko pocházející a rovnoměrně s tříhodních zrychlením) má na těleso stejný polybový účinek z hlediska impulzových vět, jako souboj všech elementárních tříhodních sil působících na částice, resp. elementy tělesa.

- Ve vztahu soustavě s ním spojené, která však vůči inerciálním soustavám nerokuje (její případná neinerciálnost je dána pouze translačním unášivým zrychlením), má druhá impulzová věta stejný tvar jako v soustavách inerciálních.

Jednou z důležitých „řolí“ středu hmotnosti je úloha náhradního působivé tříhodních sil. Proto se často nazývá těžištěm. Tento název není příliš vhodný — význam středu hmotnosti je, jak jsme se přesvědčili, daleko šířší a obecnější. Těžištěm bychom právem nazvali náhradní působivé gravitačních sil z hlediska jejich polybovitého účinku na těleso podle první a druhé impulzové věty (po-kud takový bod, resp. body, vůbec existuji). V případě centrálního gravitačního pole vytvářeného jedním hmotným objektem, nebo gravitačního pole vytvářeného superpozičí gravitačních polí od většího počtu hmotných objektů, však těžiště není obecně shodné se středem hmotnosti.

V souvislosti s předchozími úvahami o středu hmotnosti a homogenním silovém poli se nabízí obecnější otázka: Předpokládejme, že na soustavu částic působí
3.1. IMPULSOVÉ VĚTY A ZÁKONY ZACHOVÁNÍ

okolí vnějšími silami. Výslednicí vnějších sil působících na \(i \)-tou částici označme \(\vec{F}_{i}^{\text{ext}} \), výslednicí všech vnějších sil působících na soustavu pak \(\vec{F}^{\text{ext}} \), jako obvykle. Připojme-li, že platí

\[
\vec{F}_{i}^{\text{ext}} = \sum_{\gamma=1}^{K} \vec{F}_{\gamma i}, \quad \vec{F}^{\text{ext}} = \sum_{i=1}^{N} \vec{F}_{i}^{\text{ext}} = \sum_{i=1}^{N} \sum_{\gamma=1}^{K} \vec{F}_{\gamma i}^{\text{ext}}.
\]

Je možné najít bod \(O' \) tak, aby výslednice \(\vec{F}^{\text{ext}} \) s působištěm v tomto bodě měla na těleso z hlediska druhé impulsové věty stejný účinek, jako mají všechny vnější síly dohromady? Odpověď na tuto otázku znamená najít bod \(O' \) tak, aby výsledný moment všech vnějších sil vzhledem k němu byl nulový, nebo ekvivalentně, aby moment síly \(\vec{F}^{\text{ext}} \) umístěné v tomto bodě vypočteným vzhledem k jistému vztaznému bodu \(O' \) byl shodný s výsledným momentem vnějších sil vzhledem k témuž vztaznému bodu. Označíme-li \(O\bar{O}' = \vec{r} = (x, y, z) \), pak tento požadavek znamená

\[
\vec{r} \times \vec{F}^{\text{ext}} = \vec{M}^{\text{ext}} = \sum_{i=1}^{N} \vec{r}_{i} \times \vec{F}_{i}^{\text{ext}},
\]

kde \(\vec{r}_{i} \) je polohový vektor \(i \)-té částice vzhledem k bodu \(O \). Označíme-li známé složky výsledného momentu vnějších síl \(\vec{M}^{\text{ext}} = (M_{1}^{\text{ext}}, M_{2}^{\text{ext}}, M_{3}^{\text{ext}}) \) a známé složky výslednice vnějších sil \(\text{vec} \vec{F} = (F_{1}^{\text{ext}}, F_{2}^{\text{ext}}, F_{3}^{\text{ext}}) \), dostaneme z předchozího požadavku soustavu tří rovnic o třech neznámých složkách vektoru \(\vec{r} \), tj. \(x, y, z \).

\[
\begin{align*}
y F_{3}^{\text{ext}} - z F_{2}^{\text{ext}} &= M_{1}^{\text{ext}}, \\
z F_{1}^{\text{ext}} - x F_{3}^{\text{ext}} &= M_{2}^{\text{ext}}, \\
x F_{2}^{\text{ext}} - y F_{1}^{\text{ext}} &= M_{3}^{\text{ext}}.
\end{align*}
\]

Matice a rozšířená matice této soustavy rovnice jsou

\[
\begin{pmatrix}
0 & F_{3}^{\text{ext}} & -F_{2}^{\text{ext}} & | & M_{1}^{\text{ext}} \\
-F_{3}^{\text{ext}} & 0 & F_{1}^{\text{ext}} & | & M_{2}^{\text{ext}} \\
F_{2}^{\text{ext}} & -F_{1}^{\text{ext}} & 0 & | & M_{3}^{\text{ext}}
\end{pmatrix}.
\]

Snadno zjistíme, že determinant matice soustavy je bez ohledu na konkrétní hodnoty složek síly \(\vec{F}^{\text{ext}} \) nulový, takže její hodnost je menší než tři. Hodnost matice rozšířené je obecně rovna třem (složky výsledného momentu vnějších síl nejsou voleny nijak speciálně). V obecném případě tedy soustava nemá řešení a „správné“ působiště síly \(\vec{F} \) tedy neexistuje. V případě, že vnější síly působící na těleso jsou dány pouze homogenním třívým polom, tj. jejich volba je dokonce velmi speciální, je hodnost matice soustavy i matice rozšířené shodná a rovna dvěma (vraťte se k této situaci a tvrzení ověřte). Soustava má nekonečně
mnaho řešení, která tvoří jednoznačnění, ať případů, případů. Díleno pro-
stor řešení je totiž rovn u počtu neznámých a hodnoti soustavy — viz
literaturu z lineární algebry.

V soudržnosti s předchozím závěrem, že „náherní působitě“ výslednice síl z hlediska druhé
impulsové věty nemůže existovat, řešení je pro případ, kdy gravitační pole není homogenní. V případě, kdy grava-
tivační pole je vytvořeno jediným objektem o hmotnosti \(M \), který leží považovat za hmotnostní bod umístěný v počátku
soustavy soustavy, je situace jednoduchá. Protože v takovém případě jsou všechny gra-
ventní síly, jimiž objekt \(M \) působí na částice, resp. hmotné elementy soustavy, centrální, je
ž kdybychom momenty vztahováli k jinému bodu, například \(O' \), jehož polohový
vzhledem k \(O \) je \(R' \). Při standardním označení polohového vektoru \(\mathbf{r} \) částice soustavy vzhledem k bodu \(O \), resp. \(O' \) symbolem \(\mathbf{r}' \), resp. \(\mathbf{r}'_0 \) dostaneme pro výsledný moment \(\mathbf{M}_y \) resp. \(\mathbf{M}_y' \) vzhledem k bodu \(O \), resp. \(O' \):

\[
\mathbf{M}_y = \sum_{i=1}^{N} \mathbf{r}_i \times \left(-\frac{\kappa m_i M}{r_i^3} \mathbf{r}_i \right) = \sum_{i=1}^{N} (\mathbf{r}'_i + \mathbf{R}) \times \left(-\frac{\kappa m_i M}{r_i^3} \mathbf{r}_i \right) = \mathbf{M}_y + \mathbf{R} \times \mathbf{F}_y,
\]

V případě tělesa se spojího rozloženou hmotností má předchozí výpočet tvar

\[
\mathbf{M}_y = \int \mathbf{r} \times \left(-\frac{\kappa \rho M}{|\mathbf{r}|^3} \mathbf{r} \right) dV = \int \left(\mathbf{r}' + \mathbf{R} \right) \times \left(-\frac{\kappa \rho M}{|\mathbf{r}' + \mathbf{R}|^3} (\mathbf{r}' + \mathbf{R}) \right) dV = \int \mathbf{r}' \times \left(-\frac{\kappa M}{|\mathbf{r}' + \mathbf{R}|^3} (\mathbf{r}' + \mathbf{R}) \right) dV + \mathbf{R} \times \int \left(-\frac{\kappa M}{|\mathbf{r}|^3} \right) dV = \mathbf{M}_y' + \mathbf{R} \times \mathbf{F}_y,
\]

kde \(\rho \) je hustota tělesa. Z předchozích výpočtů vyplyná \((-\mathbf{R}) \times \mathbf{F}_y = \mathbf{M}' \). Požádavku „náherního
působitě“ gravitační síly vyhovuje jak bod \(O \), jehož polohový vektor vzhledem k bodu \(O' \) je
\(-\mathbf{R} \), tak všechny další body, pro jejichž polohové vektory \(\mathbf{r} \) vzhledem k bodu \(O' \) platí

\[
\mathbf{R} \times \mathbf{F}_y = \mathbf{s} \times \mathbf{F}_y \implies (\mathbf{s} - \mathbf{R}) \times \mathbf{F}_y = \mathbf{0} \implies (\mathbf{s} - \mathbf{R}) \parallel \mathbf{F}_y.
\]

Tyto body tvoří přímlam. Situace je tedy obdobná jako v případě homogenního tříhodného počtu.

Pokud je však gravitační pole tvořeno více obecně rozloženými objekty, máme co do členů
s obecnou situací, kdy „náherní působitě“ nenažde. (Vzhledem k možnosti obecného
umístění objektů vytvářejících pole nepomůže ani fakt, že je o superpoziči centrálních polí.)

3.1.4 Dvoúčástivá izolovaná soustava

V odstavci 3.1.2 jsme pomocí impulsové vět odvořili zákon zachování hybnosti
částici. Zákon zachování momentu hybnosti obecně -N-částicové izolované soustavy. Tyto zákony zachování platí i pro tělesa se spojího rozložením hmotnosti. Nyní se zaměříme na izolovanou soustavu složenou z pouhých dvou částic, takzvaný problém dvou těles. Izolovanost soustavy znamená absenci vnějšího sílového působení na jednotlivé částice, ve líc je tedy pouze vnější sílové půso-
bení, tj. vzájemné působení částic podle třetí fóli Newtonova zákona. Užíváme,
že pro takovou soustavu lze za předpokladu, že sílové pole jejich vzájemného
působení je konzervativní, definovat mechanickou energii a k zákonům zacho-
vání hybnosti a momentu hybnosti přidat ještě zákon zachování této veličiny. A

\[
\vec{M} = \vec{M}_y = \sum_{i=1}^{N} \vec{r}_i \times \left(-\frac{\kappa m_i M}{r_i^3} \vec{r}_i \right) = \sum_{i=1}^{N} (\vec{r}'_i + \vec{R}) \times \left(-\frac{\kappa m_i M}{r_i^3} \vec{r}_i \right) = \vec{M}_y + \vec{R} \times \vec{F}_y.
\]

V případě tělesa se spojího rozloženou hmotností má předchozí výpočet tvar

\[
\phi = \int \phi \times \left(-\frac{\kappa \rho M}{|\phi|^3} \phi \right) dV = \int (\phi' + \phi) \times \left(-\frac{\kappa \rho M}{|\phi' + \phi|^3} (\phi' + \phi) \right) dV = \int \phi' \times \left(-\frac{\kappa M}{|\phi'|^3} (\phi' + \phi) \right) dV + \phi \times \int \left(-\frac{\kappa M}{|\phi|^3} \right) dV = \phi = \phi' \times \vec{F}_y.
\]
3.1. IMPULSOVÉ VĚTY A ZÁKONY ZACHOVÁNÍ

to už budeme mít dostatečné prostředky k tomu, abychom například pro gravitační, nebo elektrostatickou interakci vyřešili problém dvou těles kompletně, tj. například nalezi trajectorii planety pohybující se kolem Slunce (Keplerovy zákony), nebo trajectorii nabité alfa-částice v poli jádra (rozptyl částic na jádře a účinný průřez). Poznamenejme, že zatímco problém dvoučásticové izolované soustavy je plně řešitelný analyticky, takřikajíc „tužkou na papíře“, o problému tři a více těles to neplatí. Tam je třeba sáhnout k řešení numerickému. Pro případ Sluneční soustavy, která zahrnuje osm planet a množství dalších těles, proto analytické řešení schůzné není. Pro získání základní představy o oběhnu jednotlivé planety kolem Slunce však lze vliv ostatní těles ve sluneční soustavě v první aproximaci zanedbat (popř. připadě její později započíst pomocí tzv. poruchového počtu — tímto problémem se ovšem zabýváme).

Na obr. 3.7 je znázorněna dvoučásticová izolovaná soustava tvořená tělesy (hmotnými body) o hmotnostech \(m \) a \(M \). Jsou vyznačeny polohové vektory \(\vec{r}_m \) a \(\vec{r}_M \) i rychlosti \(\vec{v}_m \) a \(\vec{v}_M \) obou částic vzhledem k meridinální vztahové soustavě \(S \). Pohyb soustavy sledujeme v časovém intervalu \([\alpha, \beta] \), v němž se částice pohybují pokřídlých \(\vec{c}_m \) a \(\vec{c}_M \). Vzájemně sílové působení je centrální a je popsáno sílovým polem \(\vec{F}(\vec{r}) \), kde \(\vec{r} = \vec{r}_m - \vec{r}_M \) je polohový vektor částice \(m \) vzhledem k částici \(M \).

![Obr. 3.7: Dvoučásticová izolovaná soustava](image-url)

Podle výsledků z odstavce 2.5.2 je centrální sílové pole konzervativní, existuje k němu tedy potenciální energie \(U(\vec{r}) \). Této skutečnosti za účelem s výhodou využijeme. Nejprve však co nejvíce vytvoříme z impulsových vět, resp. ze zákona zachování hybnosti a zákona zachování momentu hybnosti. Platí

\[
\vec{p}_0 = \vec{p}_m + \vec{p}_M = m\vec{a}_m + M\vec{a}_M = \vec{0}, \quad \vec{a}_M = -\frac{m}{M} \vec{a}_m.
\]
Nejčastější situací je studium pohybu částice m (například planeta) vzhledem k pozorovateli spojenému s částicí M (například Slunce). (Vztah na soustavu spojená s M je ovšem neinerciální.) Relativní zrychlení je

$$ \ddot{a} = \ddot{a}_m - \ddot{a}_M = \left(1 + \frac{m}{M}\right) \ddot{a}_m - \frac{F}{m} = \ddot{F}. $$

Při označení $\mu = \frac{m_M}{m + m_M}$ má poslední vztah formálně tvar druhého Newtonova zákona pro částici o hmotnosti μ zvané redukovaná hmotnost soustavy, na níž působí síla \ddot{F}. Zrychlení této pomyslné částice odpovídá relativnímu zrychlení částice m vzhledem k M.

Důsledkem druhé impulsové věty je zákon zachování momentu hybnosti

$$ \vec{\ell}_0 = \vec{r}_m \times m\vec{v}_m + \vec{r}_M \times M\vec{v}_M = \text{konst.} $$

Vyjádříme moment hybnosti soustavy rovněž pomocí relativních veličin, relativní polohy \vec{r} a relativní rychlosti \vec{v}. Řešením soustavy rovnic

$$ m\vec{v}_m + M\vec{v}_M = \vec{p}_0, \quad \vec{v} = \vec{v}_m - \vec{v}_M $$

vyjádříme rychlosti \vec{v}_m a \vec{v}_M pomocí relativní rychlosti \vec{v} a celkové (konstantní) hybnosti \vec{p}_0:

$$ \vec{v}_m = \frac{\vec{p}_0 - m\vec{v}}{m + M}, \quad \vec{v}_M = \frac{\vec{p}_0 + M\vec{v}}{m + M}. \quad (3.9) $$

Pro celkový moment hybnosti soustavy pak dostaneme

$$ \vec{\ell}_0 = \vec{r}_m \times \vec{v}_m + \vec{r}_M \times \vec{v}_M = $$

$$ = \vec{r}_m \times \frac{m(\vec{p}_0 + M\vec{v})}{m + M} + \vec{r}_M \times \frac{M(\vec{p}_0 - m\vec{v})}{m + M} = $$

$$ = \frac{m\vec{r}_m + M\vec{r}_M}{m + M} \times \frac{\vec{p}_0 + (\vec{r}_m - \vec{r}_M) \times \frac{mM}{m + M}}{\vec{v}}, \quad \vec{\ell}_0 = \vec{r}_0 \times \vec{p}_0 + \vec{r} \times \mu \vec{v} = \vec{r} \times \mu \vec{v}. \quad (3.10) $$

Poslední rovnost platí při volbě takové inerciální vztahné soustavy \mathcal{S}, jejíž počátek splývá v čase $t = 0$ se středem hmotnosti soustavy tvořené částicemi m a M, tj. s koncovým bodem vektoru $\vec{r}_0(0)$. Pak je totiž $\vec{r}_0 \times \vec{p}_0 = \vec{v}_0 t \times (m + M) \vec{v}_0 = \vec{0}$. Vidíme, že se opět objevuje redukovaná hmotnost. Ze zákona zachování momentu hybnosti vyplyvá důležitě vlastnosti trajektorie částice m vzhledem k částicí M. Moment hybnosti $\vec{\ell}_0 = \vec{r} \times \mu \vec{v}$ je konstantní, jeho směr vzhledem k (ktorékoliv) inerciální vztahné soustavě se nemění. Pevná proto zůstává i rovina tvořená vektory \vec{r} a \vec{v}. Pohyb částice m vzhledem k M je tedy pohybem rovinným, její trajektorie je rovná křivka. Pro velikost momentu hybnosti platí $\ell_0 = rv \sin \alpha$, kde α je úhel mezi vektory \vec{r} a \vec{v}. Zavedeme-li plošnou rychlost pohybu částice m vzhledem k M vztahem $\vec{w} = \frac{1}{r}\vec{r} \times \vec{v}$, vidíme, že její velikost představuje plochu opsanou příslušným \vec{r} částice m za jednotku času (viz též obr. 2.1). Tato plocha je ovšem konstantní, neboť $\ell_0 = 2\mu \vec{w} = \text{konst.}$
3.1. IMPULSOVÉ VĚTY A ZÁKONY ZACHOVÁNÍ

POZNÁMKA: Například pro pohyb planety \(m \) kolem Slunce \(M \) jsme tak získali část prvního Keplerova zákona (planeta obíhá kolem Slunce po rovnině křivce) a druhý Keplerův zákon (plochy opsané průvodiči planety za stejný čas jsou shodné). Zbyvá pak jen odvodit zbytek prvního Keplerova zákona, tj. najít konkrétní tvar trajektorie planety, a třetí Keplerův zákon, který musí vyplývat z jejího parametrického vyjádření. Získáním parametrického vyjádření trajektorie planety vzhledem ke Slunci se budeme zabývat v příkladu 3.4.

Pro dvounávazciovou izolovanou soustavu platí také zákon zachování mechanické energie. Počteme změnu kinetické energie soustavy v časovém intervalu \([\alpha, \beta] \)

\[
\Delta E_k = \left(\frac{1}{2} m v^2_m(\beta) + \frac{1}{2} M v^2_M(\beta) \right) - \left(\frac{1}{2} m v^2_m(\alpha) + \frac{1}{2} M v^2_M(\alpha) \right) = \\
= \left(\frac{1}{2} m v^2_m(\beta) - \frac{1}{2} m v^2_m(\alpha) \right) + \left(\frac{1}{2} M v^2_M(\beta) - \frac{1}{2} M v^2_M(\alpha) \right).
\]

U vědoméme si, že změna kinetické energie částice se děje na úkor práce všech sil, které na částici působí. V našem případě je tedy změna kinetické energie částice \(m \) dána prací síly \(\vec{F} \) po křivce \(\mathcal{C}_m \), změna kinetické energie částice \(M \) naopak prací síly \(-\vec{F}\) po křivce \(\mathcal{C}_M \) (odstavce 2.5.2 a 2.5.3).

\[
\delta E_k = \int_{\mathcal{C}_m} \vec{F}(\vec{r}) \, d\vec{r}_m + \int_{\mathcal{C}_M} (-\vec{F}(\vec{r})) \, d\vec{r}_M = \int_{\alpha}^{\beta} \vec{F}(\vec{r}(t)) (\vec{v}_m(t) - \vec{v}_M(t)) \, dt = \\
= \int_{\alpha}^{\beta} \vec{F}(\vec{r}(t)) \vec{v}(t) \, dt = \int_{\mathcal{C}} \vec{F}(\vec{r}) \, d\vec{r},
\]

kde \(\mathcal{C} = \mathcal{C}_m - \mathcal{C}_M \) je trajektorie částice \(m \) vzhledem k \(M \). Její parametrické vyjádření je dáno vektorovou funkcí času \(\vec{r}(t) = \vec{r}_m(t) - \vec{r}_M(t) \). Je-li silové pole \(\vec{F}(\vec{r}) \) konzervativní (centrální silové pole konzervativní je), pak jeho práce nezávisí na tvaru křivky, po které se působí síly \(\vec{F} \) pohybuje, a existuje potenciální energie \(U(\vec{r}) \), pro kterou platí

\[-U(\vec{r}(\beta)) + U(\vec{r}(\alpha)) = \int_{\mathcal{C}} \vec{F}(\vec{r}) \, d\vec{r}.\]

Nakonec dostáváme

\[
\left(\frac{1}{2} m v^2_m(\beta) + \frac{1}{2} M v^2_M(\beta) \right) + U(\vec{r}(\beta)) = \left(\frac{1}{2} m v^2_m(\alpha) + \frac{1}{2} M v^2_M(\alpha) \right) + U(\vec{r}(\alpha)) \implies \\
\frac{1}{2} m v^2_m + \frac{1}{2} M v^2_M + U(\vec{r}) = \text{konst}. \quad (3.11)
\]

Předchozí vztah představuje zákon zachování mechanické energie dvounávazciové izolované soustavy. Mechanickou energií soustavy rozumíme součet její kinetické energie a potenciální energie \(U(\vec{r}) \).
POZNÁMKA: Všimněte si, že zatímco kinetická energie soustavy je součtem kinetických energií jednotlivých částic, potenciální energie je veličinou charakterizující soustavu jako celek - nelze ji „rozložit“ na příspěvky příslušné jednotlivým částicím. Souvisí s veličinou \(r \), která popisuje vzájemnou polohu částic — konfiguraci soustavy. Proto se též nazývá \textit{konfigurační energie soustavy}.

Zákon zachování mechanické energie je pro výpočty velmi užitečný, ve tvaru (3.11) však není výhodný. Obsahuje totiž rychlosti \(\vec{v}_m \) a \(\vec{v}_M \) částic vzhledem k inerciální vztazné soustavě \(S \), zatímco by bylo těšeho vyjádřit kinetickou energii soustavy pomocí vzájemné rychlosti částic \(\vec{v} \). Rychlosti částic jsou však již pomocí vzájemné rychlosti vyjádřeny ve vztahu (3.9). Stačí proto do (3.11) dosadit. Dostaneme postupně

\[
E_k = \frac{1}{2} m \left(\frac{\vec{p}_0 + M \vec{v}}{m + M} \right)^2 + \frac{1}{2} M \left(\frac{\vec{p}_0 - m \vec{v}}{m + M} \right)^2 = \\
= \frac{m M}{2(m + M)} + \frac{1}{2} \frac{m M}{m + M} v^2 = \frac{m M}{2(m + M)} + \frac{1}{2} \mu v^2.
\]

Že se opět objevila redukovaná hmotnost, jistě už není překvapením. A není také překvapením, že se kinetická energie formálně „rozpadá“ na dva příspěvky — kinetickou energii \(\frac{p^2}{2(m + M)} = \frac{1}{2}(m + M) v^2 \), kterou lze přisoudit středu hmotnosti, a kinetickou energii \(\frac{1}{2} \mu v^2 \), která přísluší vzájemnému pohybu částic.

Zákon zachování mechanické energie dvoučásticové izolované soustavy můžeme nyní přepsat do tvaru obsahujícího pouze relativní veličiny — polohu \(r \) a rychlost \(v \) částice \(m \) vzhledem k \(M \):

\[
\frac{1}{2} \frac{m M}{m + M} v^2 + U(r) = E_0 = \text{konst.},
\]

přičemž do konstanty \(E_0 \) na pravé straně jsme „skryli“ i konstantní příspěvek — kinetickou energii středu hmotnosti soustavy.

\textbf{Dvoučásticová izolovaná soustava — zákon zachování}

\textbf{ZÁKON ZACHOVÁNÍ HYBNOSTI:} Celková hybnost dvoučásticové izolované soustavy \(\vec{p}_0 \) se s časem nemění,

\[
m \vec{v}_m + M \vec{v}_M = \vec{p}_0, \quad \vec{p}_0 \text{ je konstantní vektor.}
\]

\textbf{ZÁKON ZACHOVÁNÍ MOMENTU HYBNOSTI:} Celkový moment hybnosti \(\vec{L}_0 \) dvoučásticové izolované soustavy se s časem nemění,

\[
\vec{r}_m \times m \vec{v}_m + \vec{r}_M \times M \vec{v}_M = \vec{r}_0 \times \vec{p}_0 + \vec{r} \times \mu \vec{v} = \vec{L}_0, \quad \vec{L}_0 \text{ je konstantní vektor.}
\]
3.1. IMPULSOVÉ VĚTY A ZÁKONY ZACHOVÁNÍ

ZÁKON ZACHOVÁNÍ MECHANICKÉ ENERGIE: Mechanická energie dvoučásticově izolované soustavy E_0 se s časem nemění,

$$\frac{1}{2} \frac{mM}{m + M} v_0^2 + U(\vec{r}) = E_0, \quad E_0 \text{ je konstanta.}$$

Hmotnosti částic soustavy jsou m a M, jejich rychlosti vzhledem k inertnímu vztahu soustavy jsou \vec{v}_m a \vec{v}_M, vzájemná poloha a vzájemná rychlost jsou určeny vektory $\vec{r} a \vec{v}$.

PŘÍKLAD 3.4. Zákon zachování energie v gravitačním poli.

Uvažujme o soustavě s gravitační interakcí, tj.

$$\vec{F}_g(\vec{r}) = -\frac{kmM}{r^2} \left(\frac{\vec{r}}{r} \right), \quad U(\vec{r}) = U(r) = -\frac{kmM}{r},$$

viz vztahy (2.4) a (2.40). Zákon zachování mechanické energie pro takovou soustavu má podle (3.12) tvar

$$\frac{1}{2} \frac{mM}{m + M} v^2 - \frac{kmM}{r} = E_0. \quad (3.13)$$

Tomuto zákonu by měla vyhovovat i situace, kdy se nějaký objekt — částice o hmotnosti m — pohybuje v gravitačním poli Země M. Připomeneme-li si však zákon zachování mechanické energie částice m v tihovém polí Země, jak jsme jej používali třeba na střední škole, uvádíme odlišnost. Pracovali jsme se vztahem

$$\frac{1}{2} \frac{m v^2}{M} + mgh = \text{konst.}, \quad (3.14)$$

Výraz pro redukovanou hmotnost soustavy můžeme vhodně upravit a posoudit první členy jeho Taylorova rozvoje podle proměnné $\xi = \frac{m}{M}$ v okolí hodnoty $\xi = 0$:

$$\mu = \frac{mM}{m + M} = \frac{m}{1 + \frac{m}{M}} = \frac{m}{1 + \xi} \approx m \left(1 - \xi + 2\xi^2 - \cdots \right).$$

Zanedbáme-li všechny členy rozvoje v výjimku nultého, tj. pokud je-li $\mu \approx m$, dopustíme se relativní chyby zhruba $\xi = \frac{m}{M}$. Ta je ovšem zcela zanedbatelná, vezmeme-li v úvahu nějakou typickou hmotnost objektu v blízkosti povrchu Země, třeba $m = 5\, \text{kg}$. Hmotnost Země je zhruba $M = 5 \times 10^{24} \, \text{kg}$, relativní chyba náhrady redukované hmotnosti přímo hmotnosti částice m je tedy řádu 10^{-24}.
Všimněme si nyní potenciální energie. Vzdálenost částice \(m \) od středu Země vyjádříme jako součet její výšky nad zemským povrchem a poloměru Země, \(r = R + h \), upravíme vhodně výraz pro potenciální energii a opět použijeme jeho Taylorův rozvoj. Proměnnou bude poměr \(\xi = \frac{h}{R} \), středem rozvoje pak hodnota \(\xi = 0 \). Dostaneme

\[
U(r) = -\frac{kmM}{r} = -\frac{kmM}{R} \frac{1}{1 + \xi} \approx -\frac{kmM}{R} (1 - \xi + 2\xi^2 - \cdots).
\]

Tentokrát zanedbáme členy rozvoje s výjimkou nultého a prvního. Kdybychom použili jen nultý člen, jako jsme to udělali u redukované hmotnosti, vyšla by potenciální energie konstantní a zákon zachování mechanické energie by byl vlivem velké chyby použité aproximace porušen. V první aproximaci platí

\[
U(r) \approx -\frac{kmM}{R} \left(1 - \frac{h}{R} \right) = -\frac{kmM}{R} + \frac{kmM}{R^2} h = -\frac{kmM}{R} + mgh,
\]

kde \(g = \frac{GM}{R^2} \) je gravitační zrychlení u povrchu Země. Výraz \(-\frac{kmM}{R}\) můžeme zahrnout do konstanty na pravé straně zákona zachování mechanické energie.

Použitím obou aproximací — nahrazení redukované hmotnosti hmotností \(m \) a přiblíženího vyjádření potenciální energie dostaneme zákon zachování mechanické energie ve tvaru

\[
\frac{1}{2}mv^2 + mgh = \text{konst.}
\]

Jednoduchý středoelektrický vzorec je opravdu jen aproximativním vyjádřením přesnější verze zákona zachování mechanické energie dvoučásticově izolované soustavy.

\[\text{Příklad 3.5. Zpět ke Keplerovým zákonům.}\]

Některé závěry obsažené v Keplerových zákonech jsme v předchozích obecných úvahách o dvoučásticové izolované soustavě získali bez jakéhokoli předpokladu o konkrétním vyjádření vzájemného silového působení částic (s výjimkou před- pokladu konzervativnosti), pouze na základě impulsových vět, vztahu mezi kinetickou energií a prací síl působících na částice, a samozřejmě předpokladu o izolovanosti soustavy. Připomíne-li — jedním ze závěrů byla skutečnost, že trajektorii částice \(m \) vzhledem k \(M \) je rovniná křivka, druhým pak Keplerův zákon ploch. Tyto výsledky jsou nezávislé na konkrétním typu konzervativní interakce \(\vec{F} \), resp. odpovídající potenciální energii \(U(\vec{r}) \). Aplikujeme-li získané obecné výsledky na dvoučásticovou izolovanou soustavu s gravitační interakcí, dostaneme analytické vyjádření trajektorie planety kolem Slunce a z něj odvo- dáme zbývající tvrzení Keplerových zákonů — poloha planet po elipsách (obecně poloha těles sluneční soustavy po kuželosečkách) a pro případ eliptických druh konstantnost podílu třetí mocniny velké polosy a druhé mocniny oběžné doby.

Protože je poloha planety rovinou, můžeme zvolit soustavu souřadnic tak, aby souřadnicová rovina \(xy \) splývala s rovinou dráhy planety a osa \(z \) byla na tuto
rovinu kolmá a ukazovala směr momentu hybnosti soustavy. Pro další výpočty bude vhodné použít polárních souřadnic

\[x = r \cos \varphi, \quad y = r \sin \varphi, \quad z = 0, \]

\[\dot{x} = \dot{r} \cos \varphi - r \dot{\varphi} \sin \varphi, \quad \dot{y} = \dot{r} \sin \varphi + r \dot{\varphi} \cos \varphi, \quad \dot{z} = 0. \]

Do polárních souřadnic převedeme jak zákon zachování momentu hybnosti, tak zákon zachování mechanické energie soustavy. Pro jednoduchost opět použijeme přímo hmotnosti částice ouna místo redukované hmotnosti. Relativní čtyři takové aproximace bude tentokrát, například pro Ženu, \(\frac{m}{M} \approx 2,5 \cdot 10^{-6} \). Platí

\[\vec{\ell}_0 = m (0, 0, x\dot{y} - \dot{x}y) = (0, 0, mr^2 \dot{\varphi}), \quad \ell_0 = mr^2 \dot{\varphi} \implies \dot{\varphi} = \frac{\ell_0}{mr^2}, \]

\[E_k = \frac{1}{2} m (\dot{x}^2 + \dot{y}^2 + \dot{z}^2) = \frac{1}{2} m (\dot{r}^2 + r^2 \dot{\varphi}^2). \]

Zákon zachování mechanické energie má v polárních souřadnicích tvat

\[\frac{1}{2} m (\dot{r}^2 + r^2 \dot{\varphi}^2) - \frac{\kappa m M}{r} = E_0. \]

Dosadíme-li do něj za \(\dot{\varphi} = \frac{\ell_0}{mr^2} \) ze zákona zachování momentu hybnosti, dostaneme

\[\frac{m}{2} \left(\dot{r}^2 + \frac{\ell_0^2}{m^2 r^2} \right) - \frac{\kappa m M}{r} = E_0, \]

\[\frac{1}{2} m \dot{r}^2 + \left(- \frac{\kappa m M}{r} + \frac{\ell_0^2}{2mr^2} \right) = E_0. \quad (3.15) \]

Poslední vztah má zajímavou interpretaci. Představuje zákon zachování mechanické energie pro „pomyslnou“ částici, jejíž pohyb je v závislosti na čase popsán jedinou souřadnicí \(r = r(t) \) a odehrává se v jakém „efektivním“ potenciálovém poli složeném z gravitačního potenciálu energie a dodatečného členu, konkrétně

\[U_{ef}(r) = - \frac{\kappa m M}{r} + \frac{\ell_0^2}{2mr^2}. \]

Schematický graf této funkce je na OBR. 3.8.
Obr. 3.8: Efektivní potenciální energie planety v poli Slunce

Obrázek je z fyzikálního hlediska velmi názorný. Protože výraz $\frac{1}{2}mv^2$ je vždy nezáporný, může se pohyb uskutečnit jen pro takové hodnoty vzdálenosti r, pro které je nezáporný výraz $E_0 - U_{ef}(r)$. Je-li celková mechanická energie soustavy záporná, musí vzdálenost částice m od M ležet v určitém intervalu $[r_{\text{min}}, r_{\text{max}}]$. Trajektorií částice m je v takovém případě uzavřená kružnice - disk. Je-li hodnota E_0 rovna minimální hodnotě efektivní potenciální energie, je přípustná pouze jediná vzdálenost, označme ji R. V tomto případě se jedná o rovnoměrný pohyb po kružnici, dostěživá síla je realizována silou gravitační,

$$\frac{mv_k^2}{R} = \frac{kmM}{R^2} \Rightarrow v_k = \sqrt{\frac{\kappa M}{R}}.$$

Získaná rychlost v_k se nazývá kruhová. Pokud bychom uvažovali o umělé družici Země, která se má pohybovat po kruhové dráze těsně nad povrchem Země, dostaneme (pro hodnoty $\kappa = 6.67 \cdot 10^{-11}$ Nm2kg$^{-2}$, $M = 5.97 \cdot 10^{24}$kg, $R = 6.37 \cdot 10^6$) $v_k = 7.9 \cdot 10^3$ m s$^{-1}$ $= 8$ km s$^{-1}$. V daném konkrétním případě nazýváme tuto hodnotu kruhová rychlost $\text{první kostručková rychlost.}$

Na základě jednoduchých fyzikálních úvah, které jsme právě provedli, můžeme pro speciální případ kruhového pohybu určit pro zadané ℓ_0 hodnotu R a také minimální hodnotu efektivní potenciální energie $U_{ef,min}$, aniž bychom vyšetřovali průběh funkce $U_{ef}(r)$. Platí

$$\ell_0 = mvR, \quad \frac{1}{2}mv^2 - \frac{kmM}{R} = U_{ef,min} \quad \Rightarrow$$

$$\Rightarrow R = \frac{\ell_0^2}{km^2M}, \quad v = \frac{km}{\ell_0}, \quad U_{ef,min} = -\frac{k^2m^3M^2}{2\ell_0^2}.$$
3.1. IMPULSOVÉ VĚTY A ZÁKONY ZACHOVÁNÍ

Pro $E_0 \geq 0$ je množina připustných vzdáleností omezená pouze zdola, vzdálenost tedy může nabývat všech hodnot od jistého minima r_{min} do nekonečna, $r \in [r_{\text{min}}, \infty)$. Křivka, po které se částice m pohybuje vzhledem k M, již není uznávána. Pro $E_0 = 0$ je to parabola, pro $E_0 > 0$ hyperbola. Pro $E_0 = 0$ má zákon zachování mechanické energie tvar

$$\frac{1}{2}mv^2 - \frac{kmM}{r} = 0.$$

Efektivní potenciální energie se anuluje pro

$$U_{\text{eff}}(r_1) = 0 \implies -\frac{kmM}{r_1} + \frac{\ell_0^2}{mr_1^2} \implies r_1 = \frac{\ell_0^2}{km^2M} = \frac{R}{2}.$$

Pro rychlost ve vzdálenosti r_1 platí

$$\frac{1}{2}mv_p^2 - \frac{kmM}{r_1} \implies v_p = \frac{kmM\sqrt{2}}{\ell_0} = v_k\sqrt{2}.$$

Rychlost v_p se nazývá parabolická. Má jasný fyzikální význam, vyplývající z grafu efektivní potenciální energie na obr. 3.8. Je-li při $E_0 = 0$ částice m „nekonečně daleko“ od částice M, má nulovou kinetickou i potenciální energii. Ve vzdálenosti r_1, kdy je nulová efektivní potenciální energie je nejbližší částici M, potenciální energie je záporná a má největší množinu absolutní hodnotu $\frac{kmM}{r_1}$. Ta je kompenzována největší možnou kinetickou energií $\frac{1}{2}mv_p^2$. Vzhledem k platnosti zákona zachování mechanické energie je zřejmé, že aby potenciální energie vzrostla z hodnoty $-\frac{kmM}{r_1}$ na nulu, tj. aby se částice m vzdála od M do nekonečna a odpoutala se z jejího vlivu, musí kinetická energie snížit z hodnoty $\frac{1}{2}mv_p^2$ na nulu. Takovou rychlost je třeba udělat například unělů družic Země, aby se vzdála z dosahu jejího gravitačního pole a mohla cestovat po sluneční soustavě. Její hodnotu snadno určíme z již dříve stanovené první kosmické rychlosti, $v_p \approx 11,2$ km s$^{-1}$ a někdy ji nazýváme dráž na kosmická rychlost. Rychlost potřebná pro to, aby objekt opustil sluneční soustavu, se nazývá třetí kosmická rychlost. Zkusme si ji dosažením příslušných částečných hodnot do předchozích vypočítat.

Přeďme k řešení diferenciální rovnice (3.15). Je to rovnice se separovatelnými proměnnými:

$$\dot{r} = \sqrt{\frac{2}{m} (E_0 - U_{\text{eff}}(r))} \implies \frac{\dot{\varphi}}{\sqrt{\frac{2}{m} E_0 - \left(-\frac{kmM}{r} + \frac{\ell_0^2}{2mr^2} \right)}} = 1.$$

Abychom rovnu mohli dostat polární rovnici trajectorii, budeme hledat vzdálenost r jako funkci úhlu φ. Uvážením platnosti vztahu $\dot{r}(t) = r'(\varphi)\dot{\varphi}(t)$ (pravděpodobně pro derivování složené funkce) a opětovným vyjádřením $\dot{\varphi}$ ve zákona zachování momentu hybnosti (??) získáme nakonec diferenciální rovnici

$$\sqrt{\frac{2}{m} E_0 - \left(-\frac{2mM}{r} + \frac{\ell_0^2}{2mr^2} \right)} = 1.$$
Při integraci tohoto vztahu se standardně postupuje pomocí substituce
\[w = r^{-1} \quad \text{a poté} \quad u = \frac{\ell_0^2}{\sqrt{2mE_0\ell_0^2 + \kappa^2m^4M^2}} \left(w - \frac{\kappa^2m^2M}{\ell_0^2} \right). \]

Úpravy jsou sice nepříjemné, ale jsou rušné. Pokuste se o ně podrobně opět v rámci cvičení, zde uvedeme jen některé mezinárodně.

\[- \frac{\ell_0 w'}{\sqrt{2mE_0 - \ell_0^2} \left(w^2 - \frac{2\kappa^2m^2M}{\ell_0^2} + \frac{\kappa^2m^4M^2}{\ell_0^2} \right) + \frac{1}{w - \frac{\kappa^2m^2M}{\ell_0^2}}} = 1 \]

\[- \frac{\ell_0 w'}{\sqrt{2mE_0\ell_0^2 + \kappa^2m^4M^2} \left(1 - \frac{u'}{\sqrt{1 - u^2}} \right)^2} = 1 \quad \arccos u = \varphi + C, \]

\[\arccos \left(\frac{\ell_0^2}{\sqrt{2mE_0\ell_0^2 + \kappa^2m^4M^2}} \left(w - \frac{\kappa^2m^2M}{\ell_0^2} \right) \right) = \varphi + C \]

\[\left(\frac{1}{r} - \frac{\kappa^2m^2M}{\ell_0^2} \right) = \frac{2mE_0\ell_0^2 + \kappa^2m^4M^2}{\ell_0^2} \cos (\varphi + C). \]

Počátek měření úhlu \(\varphi \) můžeme pro jednoduchost zvolit tak, aby konstanta \(C \) byla nulová. Dále si uvědomíme, že dráha planety bude eliptická v případě, že přípustně přípustné hodnoty její vzdálenosti od Slunce leží v omezeném intervalu \((r_{\text{min}}, r_{\text{max}})\). Tomu podle Osn. 3.8 odpovídá záporná hodnota mechanické energie \(E_0 \). Označme-li

\[p = \frac{\ell_0^2}{\kappa^2m^2M}, \quad \varepsilon = \sqrt{1 - \frac{2|m|E_0|\ell_0^2}{\kappa^2m^2M^2}}, \]

přičemž je vidět, že platí \(\varepsilon < 0 \), dostaneme

\[\frac{p}{r} = 1 + \varepsilon \cos \varphi. \]

Dostali jsme polární rovnici elipsy (viz literaturu), jejíž kartézská rovnice je

\[\frac{(x + \varepsilon a)^2}{a^2} + \frac{y^2}{b^2} = 1. \]

Použitím vztahů pro charakteristiky elipsy, tj. polocesy \(a, b, \) excentricitu \(e = \varepsilon a \) a parametr \(p \) (hodnota \(p > 0 \), pro kterou bod \((-e, p)\) leží na elipsu), zjišťujeme, polocesy této elipsy jsou

\[a = \frac{\kappa m M}{2|m|E_0}, \quad b = \frac{\ell_0}{\sqrt{2mE_0}}. \]

Slunce stojí v levém ohnisku této elipsy, které splývá s počátkem soustavy souřadnic.

Zbývá ještě odvodit třetí Keplerův zákon. Oběžná doba planety kólov Slunce je podílem obalu elipsy \(\pi ab \) a plošně rychlosti planety \(w = \frac{\ell_0}{\kappa m} \).

\[T = \frac{2\pi ab}{\ell_0} = \frac{2\pi am}{\ell_0} \frac{\ell_0}{\sqrt{2mE_0}} = 2\pi a^3/2m, \]

\[T^2 = \frac{4\pi^2 a^3}{\kappa m} \Rightarrow a^3 = \frac{\kappa M}{4\pi^2}. \]

Získali jsme třetí Keplerův zákon. Podíl třetí mocniny velikosti eliptické trajektorie planety a druhé mocniny její oběžné doby je pro všechny planety sluneční soustavy stejný a závisí kromě univerzálních konstant pouze na hmotnosti Slunce.
Závěry týkající se pohybu planet kolem Slunce, které jsme před chvíli učinili, sice zřejmě platí pro jakoukoli dvoučásticovou izolovanou soustavu s gravitační interakcí. Vždy je třeba zvážit, jaké aproximace s ohledem na poměr hmotností částic soustavy si můžeme dovolit. Příkladem dobré využitelnosti výsledků, jak jsme už viděli, je třeba situace, kdy se nějaká družice pohybuje kolem Země. Může jít o Měsíc, nebo o družici umělou. Uvědomme si jistě, že řadu informací o pohybu soustavy jsme načerpali z grafu efektivní potenciální energie $U_f(r)$, aniž bychom podrobně prošetřovali její příběh, nebo řešili pohybovou rovnicí částice m vzhledem k M.

Příklad 3.6. Srážky částic.

Typickou úlohou související s zákonitostmi pohybu dvoučásticové izolované soustavy je úloha o srážkách částic. Představme si ji jako třeba v podobě hry kulečníku modifikovanou tak, že namísto dvou kouli stejných hmotností, z nichž jedna zpocátku stojí, se budou srážet koule různých počátečních hmotností m_1 a m_2 a počátečních rychlostí v_1 a v_2. Zjednodušením oproti běžné kulečníkové hře pak bude předpoklad, že srážka je přímá a středová, tj. rychlosti v_1 a v_2 jsou rovnoběžné a leží na spojnici středů kouli. (Připusťme, že při tomto zjednodušení by kulečníková hra byla nudná, poskytují nám však alespoň pro zcela základní představu o problematice srážek.)

Úkolem je zjistit rychlost kouli u_1 a u_2 bezprostředně po srážce. Námítka, že soustava tvořená koulemi není izolovaná je třeba uznat — koule jsou v kontaktu s podložkou a se Ženou. Tíhot světa je však kompenzována silou tlačovou a žádná z nich nekoná při pohybu kouli práci. Statická třetí síla, jíž podložka na koule rovněž působí, právě také nekoná, važivý odpor můžeme v kratším časovém intervalu, kdy srážka probíhá, zanedbat, stejně jako odpor prostředí. Tažký tedy není soustava izolovaná, platí v ní jak zákon zachování hybnosti (všechny vnější síly působící na soustavu se buď kompenzují, nebo jsou zanedbatelné), nebo je jejich působení tak krátkodobé, že nezpůsobí významnou změnu hybnosti, tak zákon zachování momentu hybnosti (momenty hybnosti vzhledem ke středu hmotností soustavy jsou při přímé středové srážce nulové). Je o něm o to, zda se zachází mechinická energie soustavy. Pokud je podložka, po které se koule pohybují, vodorovná, je potenciální energie při vhodně volbě nulové hladiny trvale nulová a řešíme tedy jen otázku zachování kinetické energie soustavy. Odpočte záleží na typu srážky z hlediska práce vykonzervované vnitřními silami v soustavě (těmito silami na sebe navzájem působí koule v časovém intervalu, v němž probíhá srážka). V zásadě třetíme srážky na

- **pružné**, při nichž je výsledná práce vnitřních sil nulová (jde například o pružině síla) a kinetická energie soustavy se při srážce nezmění,

- **nepružné**, kdy nenulová práce vnitřních sil způsobí pokles celkové kinetické energie soustavy.

Zvláštním případem nepružné srážky je srážka *dokonalé nepružné*, při níž dojde ke spojení těles, která se tak nakonec pokryjí společnou rychlostí.
Zabývejme se nejprve pružnou srážkou. Pro ni platí

\[m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{u}_1 + m_2 \vec{u}_2, \quad \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 = \frac{1}{2} m_1 u_1^2 + \frac{1}{2} m_2 u_2^2. \]

Protože je srážka přímá, můžeme osu \(x \) soustavy souřadnic zvolit podél spojení středů kouli (a směrů všech rychlostí) a město s vektory počítat vždy s jejich jedinou složkou - \(x \)-ovou. Řešením výše uvedené soustavy rovnic získáme výsledné rychlosti. Úprava rovnic:

\[
\begin{align*}
 m_1(v_1 - u_1) &= m_2(u_2 - v_2), \\
 m_1(v_1^2 - u_1^2) &= m_2(u_2^2 - v_2^2), \\
 m_1(v_1 - u_1) &= m_2(u_2 - v_2), \\
 v_1 + u_1 &= u_2 + v_2.
\end{align*}
\]

\[
\begin{align*}
 u_1 &= \frac{m_1 - m_2}{m_1 + m_2} v_1 + \frac{2m_2}{m_1 + m_2} v_2, \\
 u_2 &= \frac{2m_1}{m_1 + m_2} v_1 - \frac{m_1 - m_2}{m_1 + m_2} v_2.
\end{align*}
\]

Pro dokonale nepružnou srážku platí

\[m_1 \vec{v}_1 + m_2 \vec{v}_2 = (m_1 + m_2) \vec{u} \implies \vec{u} = \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2}{m_1 + m_2}. \]

Příkladem dokonale nepružné srážky je srážka střely s balistickým kyvadlem (viz Obr. 3.9).

![Diagram](image_url)
3.2. ROVNOVÁHA A POHYB TUHÝCH TĚLES

Kyvadlo je bedna o hmotnosti M zavěšená na provaze délky ℓ v homogenním gravitačním poli Země. Předpokládáme, že délka provazu je stálá (provaz není pružný). Do bedny větě střela rychlostí \vec{v}_0 a úvážme v ní. Kyvadlo se vychýlí o maximální úhel φ_0. Úkolem je určit rychlost střely.

Srážka je dokonale pružná a platí při ní zákon zachování hybnosti

$$m\vec{v}_0 + M\vec{0} = (m + M)\vec{v},$$

kde \vec{v} je společná rychlost kyvadla se střelou. Samozřejmě, kinetická energie soustavy při této srážce se nezachovává,

$$\frac{1}{2}mv_0^2 \neq \frac{1}{2}(m + M)v^2.$$

Při střecích kyvadla platí zákon zachování mechanické energie

$$\frac{1}{2}(m + M)v^2 = (m + M)g\ell(1 - \cos \varphi_0).$$

Řešením soustavy rovnic dostaneme

$$v_0 = \frac{m + M}{m} \sqrt{2g\ell(1 - \cos \varphi_0)}.$$

Snadno také určíme energiovou ztrátu — práci A vykonanou odporovými sílami (vnitřní síly soustavy) při brzdení střely v bedně. Platí

$$A = \frac{1}{2}mv_0^2 - \frac{1}{2}(m + M)v^2 = \frac{1}{2}mv_0^2 \frac{M}{m + M} - \frac{A}{2mv_0^2} = \frac{M}{m + M}.$$

Při velkém poměru hmotností kyvadla a střely M/m je ztráta mechanické energie vysoká.

3.2 Rovnováha a pohyb tuhých těles

Tuhé těleso, ať již s diskrétním, nebo spojitým rozložením hmotnosti je vloženým modelem umístěným nejen dobře pochopit impulsivě věty, ale také je aplikovat v řadě praktických situací, kdy se vlastnosti studovaných mechanických soustav modelu tuhého tělesa blízí. Jedná se například o pohyb sedaček, částí strojů a technických zařízení obecně, statickou rovnováhu objektů (stavby a jejich částí), apod. O tuhém tělese jsme se zmínili v odstavci 1.1.2. nyní jejich definici stručně zrekapitoluhujeme.

Tuhým tělesem s diskrétním rozložením hmotnosti $\{m_i, \vec{r}_i\}, \ i = 1, \ldots, N$ rozumíme soustavu částic, jejichž vzájemné vzdálenosti jsou s časem neměnné, tj.

$$|\vec{r}_i - \vec{r}_j| = \text{konst.}$$

pro libovolnou dvojici indexů i a j.
Tuhytím tělesem se spojětím rozložením hmotnosti rozumíme takové těleso, pro něž existuje vztážná soustava, v níž je hustota tělesa nezvášť na čase, tj. \(g = g(\vec{r}) \), kde \(\vec{r} \) je polohový vektor bodu v tělese vzhledem k této vztážné soustavě. Hovoříme o vztážné soustavě pevné v tělese.

Obecný pohyb tuhého tělesa lze vždy popsat jako složení čistě translacionního pohybu, při němž se všechny částice, resp. objemové elementy pohybují stejnou rychlostí \(\vec{v}(t) \), a čistě rotačního pohybu kolem pevné osy, resp. kolem pevného bodu, při němž lze pohyb každé částice popsat pomocí úhlové rychlosti \(\vec{\omega}(r) \) stejně pro všechny částice. (Situation je obdobná jako v odstavci 1.4, kdy jsme pohyb jedné vztážné soustavy vůči druhé také rozkládali na čistě translacioní a čistě rotační. Vztážná soustava přitom může reprezentovat tuhé těleso.) V tomto odstavci se budeme zabývat mechanikou tuhého tělesa postupně od nejnedodržnějších situací, kdy je tuhé těleso vzhledem ke zvolené vztážné soustavě v kliďu (statická rovnováha těles) po nejsložitější případ rotace setrvačníku kolem pevného bodu. Určíte „nezistupění“ představuje rotace tutého tělesa kolem pevné osy. Tento případ pohybu je velmi názorný a přes svou jednoduchost přináší informace podstatné pro hlubší pochopení problémů pohybu těles. Čistě translacionní pohybem tuhého tělesa se zdás dobarmo nebudeme — jedná se o mimořádně jednoduchou situaci, kdy stačí studovat pouze pohyb středu hmotnosti tělesa. Ten „zastupuje“ pohyb všech částí tělesa a řídí se první impulsou větou.

3.2.1 Rovnováha tuhého tělesa

Předpokládejme, že tuhé těleso sledujeme v jisté inerciální vztážné soustavě. Zajímáme se o situace, kdy je těleso (a tedy každá jeho část) vzhledem k této vztážné soustavě v kliďu. Nutným, i když nikoli postačujícím požadavkem pro zajištění kliďu tělesa je splnění podmínk statické rovnováhy, vycházejících z požadavku neměnnosti celkové hmotnosti a celkového momentu hmotnosti tělesa. Nutnými podmínkami statické rovnováhy jsou proto silová a momentová rovnováha

\[
\vec{F}_{\text{ext}} = \vec{0}, \quad \vec{M}_{\text{ext}} = \vec{0},
\]

kde \(\vec{F}_{\text{ext}} \), resp. \(\vec{M}_{\text{ext}} \) je výsledně vzniklých sil působících na těleso, resp. jejich výsledný moment. Pro těleso s diskrétním, resp. spojitém rozložením hmotnosti lze podmínky (3.16) zapsat podrobněji takto:

\[
\sum_{\gamma=1}^{K} \sum_{i=1}^{N} \vec{F}_{\gamma i} = \vec{0}, \quad \sum_{\gamma=1}^{K} \sum_{i=1}^{N} \vec{M}_{\gamma i} = \sum_{i=1}^{N} \vec{r}_i \times \sum_{\gamma=1}^{K} \vec{F}_{\gamma i} = \vec{0},
\]

resp.

\[
\int_V \vec{F}_{\text{ext}}(\vec{r}, t) \, dt = \vec{0}, \quad \int_V \vec{r} \times \vec{M}_{\text{ext}}(\vec{r}, t) \, dt = \vec{0}.
\]

Integračním oborem v druhé sadě vztahů je objem tělesa \(V \). Praktické použití podmínek rovnováhy nejlépe ukážeme na jednoduchých příkladech.
Příklad 3.7. Rovnováha tuhých těles — jednoduchý žebřík.

Každý jistě někdy zkoušel opřít žebřík o stěnu a možná se setkal se situací, kdy žebřík sklozl po podlaze a po stěně a spadl. Zkušenost říká, že taková situace nastane, je-li úhel θ, který svírá žebřík s podlahou příliš velký. A někdo by se jistě nepokoušel opřít žebřík o klužkovou stěnu, kdyby i podlaha byla klužká (například ledová plocha). Zkušenost totiž opět napovídá, že by se to nepodařilo. Dokážeme tyto situace vysvětlit? Je třeba si uvědomit, jaké síly působí na žebřík opřený a stěnu. Povíme obrázek Obr. 3.10. V jeho levé části jsou zobrazeny síly působící na žebřík o hmotnosti m stojící na klužkové podlaze a opřený a klužkovou stěnu. Působí na už jeden třetí síla mg umístěná ve středu hmotnosti žebříku (pro homogenní žebřík v polovině jeho délky), tlaková síla stěny N_1 kolmá je stěně a tlaková síla podlahy N_2 kolmá k podlaze. Takový žebřík bychom museli přidržovat další sílu, například \vec{F}, která by kompenzovala tlakovou sílu stěny. Jinak by nebylo možné docílit silové rovnováhy.

V pravé části obrázku pomáhají žebřík udržet v rovnováze tři síly \vec{T}_1 a \vec{T}_2, jimiž na žebřík působí stěna a podlaha. Pokusme se pro situaci vlevo určit pro zadaný úhel θ „přidatnovou“ sílu \vec{F}. Momenty sil můžeme vyjádřit vzhledem k libovolnému vztažnému bodu pevnému v dané inerciální vztažné soustavě. Zvolme jej tak, aby počítání bylo co nej jednodušší, tj. aby co nejvíce momentů sil bylo vůči němu nulových. Tuto vlastnost má například bod O, v němž působí
síly \(\vec{N}_2 \) a \(\vec{F} \), jejich momenty vzhledem k vodě \(O \) jsou nulové. Podmínky silové a momentové rovnováhy mají tvar

\[
m\ddot{g} + \vec{N}_1 + \vec{N}_2 + \vec{F} = \vec{0}, \quad \vec{M}_{m\ddot{g}} + \vec{M}_{\vec{N}_1} + \vec{M}_{\vec{N}_2} + \vec{M}_{\vec{F}} = \vec{0},
\]

Ve složkách platí

\[
m\ddot{g} = (0, -mg, 0), \quad \vec{N}_1 = (N_1, 0, 0), \quad \vec{N}_2 = (0, N_2, 0), \quad \vec{F} = (-F, 0, 0),
\]

\[
\vec{M}_{m\ddot{g}} = \left(0, 0, mg\ell \cos \theta\right), \quad \vec{M}_{\vec{N}_1} = (0, 0, -N_1\ell \sin \theta),
\]

\[
\vec{M}_{\vec{N}_2} = (0, 0, 0), \quad \vec{M}_{\vec{F}} = (0, 0, 0).
\]

Podmínky rovnováhy ve složkách tak mají tvar

\[
N_1 - F = 0, \quad -mg + N_2 = 0, \quad mg\ell \cos \theta - N_1\ell \sin \theta = 0.
\]

Z rovnice (3.17) je vidět, že pokud bychom na žebřík nepůsobili dodatečnou sílou \(\vec{F} \), mohla by být první z rovnice splněna jen pro \(N_1 = 0 \). Pak by ovšem nemohla být splněna třetí rovnice. Bez působení dodatečné síly nemůžeme situaci v levé části obrázku obr. 3.10 vůbec realizovat. Z rovnice (3.17) můžeme velikost dodatečné síly (umístěné v bodě \(O \) a vodorovně) snadno zjistit, snadně je i určení tlakové síly \(N_2 \):

\[
F = \frac{mg}{\cot \theta} = \frac{mg}{2} \cot \theta, \quad N_2 = mg.
\]

Předchozí vztahy jsou velmi názorné. Tlaková síla \(\vec{N}_2 \) musí stále kompenzovat sílu tluhoval. „Dodatečná“ síla \(\vec{F} \) má průběh kotangenty, tj. klesající funkce úhlu \(\theta \). Opět žebřík pod velmi malým úhlem \(\theta \) je skoro nemožné — potřebovaly bychom k tomu velkou sílu. Například pro \(m = 5,0 \, \text{kg}, \quad g = 9,8 \, \text{m.s}^{-2} \) a \(\theta \) postupně 5°, 20°, 45°, 60° a 85° potřebujeme působit sílou 560 N, 135 N, 49,0 N, 28,3 N, 4,29 N. Pro \(\theta = 90° \) je \(F = 0 \, \text{N} \) — žebřík by mohl sám stát ve všední pokoe. Tlaková rovnováha by ovšem nebyla stabilní, při sebemenším výkyvu, tj. při jakoli malé změně úhlu \(\theta \) by žebřík spadl.

Situace v pravé části obrázku zahrnuje také statické třetí síly. Můžeme se proto pokusit najít podmínky rovnováhy žebříka bez dodatečné síly \(\vec{F} \). Ve vektorovém tvaru jsou následující:

\[
m\ddot{g} + \vec{N}_1 + \vec{N}_2 + \vec{T}_1 + \vec{T}_2 = \vec{0}, \quad \vec{M}_{m\ddot{g}} + \vec{M}_{\vec{N}_1} + \vec{M}_{\vec{N}_2} + \vec{M}_{\vec{T}_1} + \vec{M}_{\vec{T}_2} = \vec{0},
\]

ve složkách pak

\[
N_1 - T_2 = 0, \quad -mg + N_2 + T_1 = 0, \quad mg\ell \cos \theta - N_1\ell \sin \theta - T_1\ell \cos \theta = 0 \implies mg - 2T_1 - 2N_1 \ell \cos \theta.
\]

\[\text{KAPITOLA 3. MECHANIKA SOUSTAV ČÁSTIC}\]
3.2. ROVNOVÁHA A POHYB TUHÝCH TĚLESE

V této soustavě tří rovnic je však pět neznámých, N_1, N_2, T_1, T_2 a $\tan \theta$. V této podobě má soustava nekonečně mnoho řešení. Vyjádříme jí třeba pomocí $\tan \theta$ a T_2. Dostaneme

\begin{align*}
N_1 &= T_2, \\
N_2 &= \frac{1}{2}mg + T_2 \tan \theta, \\
T_1 &= \frac{1}{2}mg - T_2 \tan \theta.
\end{align*}

(3.19)

Řešení je třeba omezit dalšími podmínkami. Třečí síly jsou totiž statické, jejich největší přípustná velikost je proto dána příslušnou tlakovou silou a statickým koeficientem tření (viz odstavec 2.4.1). Označíme-li statický koeficient tření mezi žebříkem a stěnou, resp. podlahou, $f_{s,1}$, resp $f_{s,2}$, platí nerovnosti

$$T_1 \leq N_1 f_{s,1}, \quad T_2 \leq N_2 f_{s,2}. $$

Dosadíme-li do první z obou nerovností za T_1 ze třetí rovnice soustavy (3.19), místo T_2 dosadíme N_1 a využijeme druhé nerovnosti, dostaneme

$$\frac{1}{2}mg - N_1 \tan \theta \leq N_1 f_{s,1} \implies N_1 \geq \frac{mg}{2(f_{s,1} + \tan \theta)}. $$

Vynásobením druhé rovnice soustavy (3.19) koeficientem $f_{s,2}$ a využitím druhé z výše uvedených nerovností získáme postupně

$$N_2 f_{s,2} = \frac{1}{2}mg f_{s,2} + T_2 f_{s,2} \tan \theta \leq \frac{1}{2}mg f_{s,2} + N_2 f_{s,2}^2 \tan \theta \implies N_2 f_{s,2} \left(1 - f_{s,2} \tan \theta\right) \leq \frac{1}{2}mg f_{s,2}. $$

Celkově pak

$$\frac{mg}{2(f_{s,1} + \tan \theta)} \leq N_1 \leq N_2 f_{s,2} \leq \frac{mg f_{s,2}}{2(1 - f_{s,2} \tan \theta)} \implies \frac{1 - f_{s,1} f_{s,2}}{2 f_{s,2}} \leq \tan \theta
$$

pro $1 - f_{s,2} \tan \theta > 0$. Naproti tomu v případě, kdy $1 - f_{s,2} \tan \theta \leq 0$, je nerovnost $N_2 f_{s,2} \left(1 - f_{s,2} \tan \theta\right) \leq \frac{1}{2}mg f_{s,2}$ splněna vždy, a proto jsme omezení pouze podmínkou

$$\frac{1}{f_{s,2}} \leq \tan \theta < \infty.$$

Protože vždy platí $\frac{1 - f_{s,1} f_{s,2}}{2 f_{s,2}} \leq \frac{1}{f_{s,2}}$, je úhel θ ve výsledku omezen podmínkou

$$\frac{1 - f_{s,1} f_{s,2}}{2 f_{s,2}} \leq \tan \theta < \infty \implies \arctg \frac{1 - f_{s,1} f_{s,2}}{2 f_{s,2}} \leq \theta < \frac{\pi}{2}.$$

Protože koeficienty tření jsou kladné, lze požadované nerovnosti vždy pro nějaký interval úhlů θ splnit. Dokonce lze splnit i pro $f_{s,1} = 0$. Žebřík lze ke stěně
přístavit vždy, je-li nenulový koeeficient statického tření mezi stěnou a podlahou. V tabulkách můžeme najít hodnoty koeeficientů statického tření pro různé kombinace materiálů. Žebřík bývá většinou dřevěný, podlaha a stěny v některých případech také. Průměrná hodnota koeeficientu statického tření uváděná v tabulkách pro kombinaci dřevo–dřevo je 0,65. Pro přípustný interval úhlu θ pak vychází nerovnost

$$
\frac{1 - 0,65^2}{2 \cdot 0,65} < \tan \theta < \infty \implies 0,45 < \tan \theta < \infty \implies 24^\circ < \theta < 90^\circ.
$$

Úhel sklonu žebříku může být v principu i rovný 90°, rovnováha však opět nebude stabilní, obdobně jako v případě bez tření.

V souvislosti s předchozím příkladem nás může napadnout ještě jeden problém: Volba vztáhového bodu pro výpočet momentů síl je libovolná. Výsledný moment všech vnějších síl působících na těleso musí být v rovnováze nulový vzhledem ke každému vztáhovému bodu pevnému v interciální soustavě. Různými vybírání vztáhových bodů bychom tedy mohli dostat řadu různých rovnic pro rovnováhu momentů. Pro hledané veličiny tedy můžeme získat libovolně mnoho rovnic.

Není to překážka? Jistě lze dokázat, že existuje nejmenší poloha ke kterému je vztahovému bodu $\vec{O}' = \vec{R}$. Podle označení, které jsme použili v odstavci 3.1, působí γ-tou částicí k příslušné tělesa síly $\vec{F}^\text{ext}_{i\gamma}$, $\gamma = 1, 2, \ldots, K, i = 1, 2, \ldots, N$. Polohový vektor působíť této síly vzhledem k bodu O označme jako obvykle \vec{r}_i, polohový vektor téhož působíť vzhledem k O' jako \vec{r}'_i. Platí

$$
\vec{r}_i = \vec{r}'_i + \vec{R}.
$$

Výsledný moment vnějších síl vzhledem k bodu O označme \vec{M}^ext, vzhledem k bodu O' pak $(\vec{M}^\text{ext})'$. Platí

$$
\vec{M}^\text{ext} = \sum_{i=1}^{N} \vec{r}_i \times \vec{F}^\text{ext}_{i\gamma} = \sum_{i=1}^{N} \vec{r}'_i \times \vec{F}^\text{ext}_{i\gamma} + \vec{R} \times \sum_{i=1}^{N} \sum_{\gamma=1}^{K} \vec{F}^\text{ext}_{i\gamma}.
$$

Vzhledem k požadavku sílové rovnováhy je součet všech vnějších síl působících na těleso, a tedy druhý sčítací v předchozím výrazu, nulový. První sčítací představuje moment všech vnějších síl vzhledem k bodu O', platí tedy $(\vec{M}^\text{ext})' = \vec{M}^\text{ext}$.

Pro prověření ještě jeden příklad, tentokrát se štaflemen. Homogenní dvojitý žebřík délky ℓ o celkové hmotnosti $2m$ stojí u vodorovné podlaze tak, že v s ní svírá úhel θ. Ramena žebříku jsou spojena provazem uchyteným v jejich středech. Na levém rameně žebříku stojí člověk ve vzdálenosti čtvrtiny délky ramene od jeho dolního konce. Tření mezi žebříkem a podlahou je zanedbatelné. Situaci ukazuje obr. 3.11.
3.2. ROVNOVÁHA A POHYB TUHÝCH TĚLÉS

Úkolem je určit síly \(\vec{T} \) a \(-\vec{T} \), jimiž působí napjatý provaz na ramena žebříku a síly \(\vec{F} \) a \(-\vec{F} \), jimiž na sebe navzájem působí ramena žebříku v bodě \(A \). Souřadnicové ose zvolme stejně jako v předchozím příkladu a podle obrázku také označme síly působící na žebřík. Podmínka silové rovnováhy celého žebříku má tvar

\[2mg + M\vec{g} + \vec{N}_1 + \vec{N}_2 = \vec{0} \]

(věte, proč se v ní nevyskytují síly \(\vec{F}, -\vec{F}, \vec{T} \) a \(-\vec{T} \)? Protože jsou \(x \)-ové a \(z \)-ové složky sil vystupujících v podmínce rovnováhy nulové, je zápis ve složkách velmi jednoduchý:

\[-2mg - Mg + N_1 + N_2 = 0. \]

Za vztažný bod pro výpočet momentů sil zvolme třeba bod \(O \). Součet momentů vnučích sil vzhledem k tomuto bodu (stejně jako ke kterémkoli jinému pevnému bodu v inertním vztažné soustavě) je nulový,

\[\vec{M}^{\text{ext}} = \vec{M}_{Mg} + \vec{M}_{mg} + \vec{M}_{N1} + \vec{M}_{N2} = \vec{0}, \]

kde \(\vec{M}_{mg} \) resp. \(\vec{M}_{mg} \) je moment tihové síly působící na levé, resp. pravé rameno žebříku. V podmínce opět nevystupují momenty sil \(\vec{T}, -\vec{T}, \vec{F} \) a \(-\vec{F} \). Proč? Pro momenty platí

\[\vec{M}_{Mg} = \left(0, 0, \frac{7Mg\ell}{8} \cos \theta \right), \quad \vec{M}_{mg} = \left(0, 0, \frac{3mg\ell}{2} \cos \theta \right), \]
\[M^{(p)}_{m g} = \left(0, 0, \frac{m g \ell}{2} \cos \theta \right), \]
\[M_{N_1} = (0, 0, -2N_1 \ell \cos \theta), \quad M_{N_2} = 0. \]

Z-ová složka podmínek momentové rovnováhy vede po vykrácení \(\cos \theta \) ne tvar
\[\frac{7Mg \ell}{8} + \frac{3mg \ell}{2} + \frac{mg \ell}{2} - 2N_1 \ell = 0 \implies N_1 = mg + \frac{7}{8} Mg. \]

Velikost síly \(\vec{N}_2 \) již snadno vypočtěme z podmínek silové rovnováhy,
\[\vec{N}_2 = mg + \frac{1}{8} Mg. \]

Nyní se hodí odpovědět na otázky týkající se síl \(\vec{T}, -\vec{T}, \vec{F} \) a \(-\vec{F} \). Tyto síly ani jejich momenty se v podmínkách rovnováhy pro celý žebřík neuplatňují, protože z hlediska žebříku jako celku jsou silami vnějšími. Z hlediska jednotlivých částí žebříku, například ramen, však budou silami vnějšími. Protože je žebřík v rovnováze, ke v rovnováze každá jeho část, tedy i jednotlivá ramena. Například pro pravé rameno platí
\[m\vec{g} + \vec{N}_2 - \vec{T} - \vec{F} = \vec{0} \implies N_2 - mg - F_y = 0, \quad -T + F_x = 0, \]
\[M^{(p)}_{m g} + M_{N_2} + M_{-F} + M_{-T} = \vec{0} \implies \]
\[\implies \frac{mg \ell}{2} \cos \theta + \frac{T \ell}{2} \sin \theta - F_x \ell \sin \theta - F_y \ell \cos \theta = 0. \]

Z rovnic silové rovnováhy ve složkách a na základě již znalosti velikosti síly \(\vec{N}_2 \) dostaneme \(F_x = T, \quad F_y = \frac{1}{8} Mg \). Dosazení do podmínek momentové rovnováhy umožní získat složky síl \(\vec{F} \) a \(\vec{T} \):
\[T = \left(\frac{1}{4} M + m \right) g \cotg \theta, \quad \vec{F} = \left(- \left(\frac{1}{4} M + m \right) g \cotg \theta, \quad \frac{1}{8} Mg \right). \]

Pokuste se napsat a řešit podmínky rovnováhy pro levé rameno žebříku — výsledky by měly být shodné.

3.2.2 Tenzor \(\hat{J} \) jako „převodník“ mezi úhlovou rychlostí a momentem hybnosti

V odstavci 1.1 jsme definováli tenzor momentu směrovačnosti pouze formálně. Zatím o něm věděli pouze to, že jakýmisí způsobem, avšak odlišně od popisu pomocí dvojic \(\{s_i, \vec{r}_i\} \), resp. pomocí hustoty, charakterizuje rozložení hmotnosti v tělese. Jaký fyzikální význam tohoto řešitelné charakteristiky má, zatím není jasné. Uvidíme, že je pro případ tělesa se svislým vztahem mezi momentem hybnosti a úhlovou rychlostí tělesa. Uvažujeme o čistě rotačním pohybu tělesa. Jeho střed hmotnosti je tedy v klidu vzhledem k jiné inerciální vztazné soustavě. Zvolíme její počátek \(O \) právě ve středu hmotnosti (viz Oml. 3.12).
3.2. ROVNOVÁHA A POHYB TUHÝCH TĚLES

Obr. 3.12: K řOVAČNÍMU POHYBU TUHÝHO TĚLESA

Z předpokladu, že je těleso tuhé, bezprostředně vyplývá, že úhlová rychlost je v každém oka-
miříku společná pro všechny jeho částice, resp. hmotné elementy. Označme ji \(\omega(t) \). V daném
okamžiku se každá částice nachází na "své" okušáční kružnici, úhlová rychlost je kolmá k
okušáční rovině - viz odstavce 1.3.3 a 1.3.5. Středy okušáčních kružnic leží na přímce kolmé
ke všem (navazujícím rovnoněžným) okušáčním rovínám a procházející bodem \(O \). \(\omega(t) \) je smě-
rovný vektorom této přímky. Tuto přímku nazýváme okamžitou osovou roliču. V Obr. 3.12 je
označena jako \(o(t) \). Pro okamžitou rychlost \(i \) té částice platí

\[
\vec{v}_i(t) = \vec{\omega}(t) \times (S_iA_i^\prime) = \vec{\omega}(t) \times (\vec{r}_i(t) - OS_i^\prime) = \vec{\omega}(t) \times \vec{r}_i(t).
\]

Pro celkový moment hybnosti tělesa \(\ell_0 \) vzhledem k bodu \(O \) platí (již bez vypisování argumentu
\(t \) a s využitím vztahu \(\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} \)

\[
\ell_0 = \sum_{i=1}^{N} m_i \vec{r}_i = \sum_{i=1}^{N} m_i \vec{r}_i \times (\vec{\omega} \times \vec{r}_i) = \sum_{i=1}^{N} [m_i (\vec{r}_i \cdot \vec{\omega}) \vec{\omega} - m_i (\vec{\omega} \cdot \vec{r}_i) \vec{\omega}].
\]

Vektor \(\ell_0 \) vyjadříme ve složkách ve zvolené nesoustavě souřadnic \(< O; x, y, z \). Označme \(\ell_0 =
(\ell_1, \ell_2, \ell_3) \). Platí

\[
\ell_1 = \sum_{i=1}^{N} \left[m_i (x_i^2 + y_i^2 + z_i^2)\omega_1 - m_i (x_i\omega_1 + y_i\omega_2 + z_i\omega_3)x_i \right] =
\]

\[
= \left(\sum_{i=1}^{N} m_i \left(y_i^2 + z_i^2 \right) \right) \omega_1 + \left(- \sum_{i=1}^{N} m_i x_i y_i \right) \omega_2 + \left(- \sum_{i=1}^{N} m_i x_i z_i \right) \omega_3.
\]

\[
\ell_2 = \sum_{i=1}^{N} \left[m_i (x_i^2 + y_i^2 + z_i^2)\omega_2 - m_i (x_i\omega_1 + y_i\omega_2 + z_i\omega_3)y_i \right] =
\]

\[
= \left(- \sum_{i=1}^{N} m_i x_i y_i \right) \omega_1 + \left(\sum_{i=1}^{N} m_i (x_i^2 + z_i^2) \right) \omega_2 + \left(- \sum_{i=1}^{N} m_i y_i z_i \right) \omega_3.
\]

\[
\ell_3 = \sum_{i=1}^{N} \left[m_i (x_i^2 + y_i^2 + z_i^2)\omega_3 - m_i (x_i\omega_1 + y_i\omega_2 + z_i\omega_3)z_i \right] =
\]

\[
= \left(- \sum_{i=1}^{N} m_i x_i z_i \right) \omega_1 + \left(- \sum_{i=1}^{N} m_i y_i z_i \right) \omega_2 + \left(\sum_{i=1}^{N} m_i (x_i^2 + y_i^2) \right) \omega_3.
\]
KAPITOLA 3. MECHANIKA SOUSTAV ČÁSTIC

Každá ze složek momentu hybnosti tělesa je tedy lineární kombinací složek úhlové rychlosti. Ze vzťahů (1.4) je vidět, že koeficienty těchto lineárních kombinací jsou právě složky tenzoru momentu setrvačnosti,

\[
\begin{align*}
\ell_1 &= J_{11}\omega_1 + J_{12}\omega_2 + J_{13}\omega_3, \\
\ell_2 &= J_{12}\omega_1 + J_{22}\omega_2 + J_{23}\omega_3, \\
\ell_3 &= J_{13}\omega_1 + J_{23}\omega_2 + J_{33}\omega_3,
\end{align*}
\]

nebo matricově

\[
(\ell_1 \ell_2 \ell_3) = (\omega_1 \omega_2 \omega_3) \begin{pmatrix} J_{11} & J_{12} & J_{13} \\ J_{12} & J_{22} & J_{23} \\ J_{13} & J_{23} & J_{33} \end{pmatrix}.
\]

Tensor momentu setrvačnosti funguje jako symetrický lineární operátor, který vektorům úhlové rychlosti přiznaje vektory momentu hybnosti. Započneme-li do hry znalosti z lineárních algebra, uvědomíme si, že pro takový symetrický lineární operátor vždy existuje taková soustava souřadnic \(\langle O; x', y', z' \rangle \), v níž má matice reprezentující tento operátor diagonální tvar. Hodnoty v diagonále označme \(J_1, J_2 \) a \(J_3 \). Souvislost mezi maticemi \(J \) a \(\mathcal{J} \) je dána tzv. podobnostní transformací \(\mathcal{J} = TJT^{-1} \), kde \(T \) je matice přechodu od ortornormální báze spojené se soustavou souřadnic \(\langle O; z, y, z \rangle \) k ortornormální bázi spojené se soustavou \(\langle O; x', y', z' \rangle \). Oby soustavy \(\langle O; x', y', z' \rangle \) jsou hlavní osy tenzoru momentu setrvačnosti.

3.2.3 Rotace tuhého tělesa kolem pevné osy

Pevnou osou při rotaci tuhého tělesa rozumíme jakoukoli přímku \(o \), která je nepohyblivá v jístě inerciální vztážné soustavě, a vzhledem k níž těleso pouze rotuje úhlovou rychlostí \(\vec{\omega}(t) \), jejíž směr nezávisí na čase. Vzpomeňme si na vlastnosti středu hmotnosti tělesa a uvědomíme si, že „pevnou osu“ můžeme spojit také se středom hmotnosti: bude to přímka, která prochází středem hmotnosti a je pevná ve vztážné soustavě, jejímž počátkem je náprstk pravý střed hmotnosti, a která vůči inerciálním vztážným soustavám nerotuje (její souřadnicové osy jsou trvale rovnoběžné se souřadnicovými osami jístě inerciální soustavy).

Je zřejmé, že při rotaci tuhého tělesa kolem pevné osy \(o \) se všechny jeho částice, resp. hmotné elementy pohybují po kružnicích ležících v rovinách kolmých k cse \(o \), jejichž středy leží na této cse. Úhlová rychlost \(\vec{\omega}(t) \) je spočetná pro všechny částice — toto významné zjednodušení popisu pohybu vyplývá právě z předpokladu, že těleso je tuhé. Situaci pro tuhé těleso s diskontinuálním rozložením hmotnosti vystihuje Obr. 3.13, z něhož je také zřejmé označení potenciálních veličin: \(\bar{t} \)-tá částice o hmotnosti \(m_i \) se pohybuje po kružnici \(\mathcal{K}_i \) o poloměru \(R_i \), kružnice leží v rovině kolmé k cse \(o \) a její střed \(S_i \) leží na této cse. Polohový vektor \(\vec{r}_i \) je součtem vektorů \(s_i \) ležícího v cse rotace a vektorů \(\vec{q}_i \), který je k cse rotační koule, \(\vec{r}_i = \vec{s}_i + \vec{q}_i \). Úhlová rychlost \(\vec{\omega} \) (obecně závislá na čase) má směr cse roty. Vztážným bodem pro výpočet momentů je bod \(O \). Pro rychlost \(\bar{t} \)-té částice, \(t = 1, \ldots, N \), platí (vizi odstavec 1.3.5)

\[
\vec{\omega}_i = \vec{\omega} \times \vec{q}_i = \vec{\omega} \times (\vec{r}_i - \vec{s}_i) = \vec{\omega} \times \vec{r}_i,
\]

neboť \(\vec{r}_i \parallel \vec{\omega} \).
3.2. ROVNÝ A POHYB TUHÝCH TĚLES

OBR. 3.13: ROTACE TUHÉHO TĚLESA KOLEM PENVÉ OSY

Vypočteme moment hybnosti tělesa vzhledem k bodu \(O \). Platí

\[
\vec{\ell}_0 = \sum_{i=1}^{N} \vec{r}_i \times m_i \vec{v}_i = \sum_{i=1}^{N} m_i (\vec{s}_i + \vec{q}_i) \times (\vec{\omega} \times \vec{q}_i).
\]

Pomocí vztahu pro „dvojitý“ vektorový součín

\[
\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \vec{c})\vec{b} - (\vec{a} \vec{b})\vec{c}
\]

můžeme výraz upravit do tvaru

\[
\vec{\ell}_0 = \sum_{i=1}^{N} m_i \left\{ (\vec{s}_i \vec{q}_i) \vec{\omega} + (\vec{s}_i \vec{\omega}) \vec{q}_i + (\vec{q}_i)^2 \vec{\omega} + (\vec{\omega} \vec{q}_i) \vec{s}_i \right\} \implies
\]

\[
\vec{\ell}_0 = \left(\sum_{i=1}^{N} m_i q_i^2 \right) \vec{\omega} + \omega \left(\sum_{i=1}^{N} m_i s_i \vec{q}_i \right).
\]

(3.22)

Při poslední úpravě jsme využili skutečnosti, že \(\vec{s}_i \perp \vec{q}_i \), \(\vec{s}_i \perp \vec{q}_i \), \(\vec{s}_i \parallel \vec{q}_i \), tj.

\[
\vec{s}_i \vec{q}_i = 0, \quad \vec{q}_i \vec{\omega} = 0, \quad \vec{s}_i \vec{\omega} = \omega \vec{s}_i.
\]

Pro těleso se spojitým rozložením hmotnosti se moment hybnosti vyjádří analogicky (místo součtů budou integrály přes objem tělesa),

\[
\vec{\ell}_0 = \left(\int_V q^2 \mathrm{d}V \right) \vec{\omega} + \omega \left(\int_V -q \vec{q} \mathrm{d}V \right).
\]

(3.23)

Všechny si podrobněji geometrické významy vztahů (3.22) a (3.23) — vyšvětlovať si jej například na prvním z obou vztahů. První sčítanec je vektor
KAPITOLA 3. MECHANIKA SOUSTAV ČÁSTIC

rovnoběžný s úhlovou rychlostí \(\omega \), tj. rovnoběžný s osou rotace. Druhý sčítanec je lineární kombinace vektorů \(\vec{q}_i, \ i = 1, \ldots, N \), s koeficienty \(m_i s_i \omega \). Všechny vektory \(\vec{q}_i \) jsou však kolmé k ose rotace, proto i jakákoli jejich lineární kombinace je rovnoběžný vektorem kolmým k ose rotace. Vztah (3.22) tak představuje rozklad celkového momentu hybnosti tělesa do směru coby rotace a do rovniny kolmé k ose rotace,

\[
\vec{\ell}_0 = \vec{\ell}_{0,\parallel} + \vec{\ell}_{0,\perp}, \quad \vec{\ell}_{0,\parallel} = J_o \omega, \quad J_o = \sum_{i=1}^{N} m_i q_i^2, \quad \vec{\ell}_{0,\perp} = -\omega \sum_{i=1}^{N} m_i s_i \vec{q}_i, \quad (3.24)
\]

přičemž veličina

\[
J_o = \sum_{i=1}^{N} m_i q_i^2 \quad (3.25)
\]

je moment setrvačnosti tělesa vzhledem k coby ose. Velkou výhodou je skutečnost, že se moment setrvačnosti tuhého tělesa vzhledem k pevné coby s časem nemění. I když se totiž během rotace mění směr vektorů \(\vec{q}_i \), zůstává každá částice tuhého tělesa stále stejně daleko od coby, a proto \(q_i^2 \) je konst. pro všechna \(i = 1, \ldots, N \). Druhou impulzovou větu pro tuhé těleso můžeme zapsat ve velmi přehledném tvaru, zapíšeme-li její vyjádření pro oba průměty — průmět do coby rotace a průmět do rovniny kolmé k ose rotace,

\[
\frac{d\vec{\ell}_0}{dt} = \vec{M}_\text{ext}, \quad \frac{d\vec{\ell}_{0,\parallel}}{dt} = \vec{M}_\text{ext}_\parallel, \quad \frac{d\vec{\ell}_{0,\perp}}{dt} = \vec{M}_\text{ext}_\perp, \quad \text{tj.}
\]

\[
J_o \vec{\varepsilon} = \vec{M}_\text{ext}_\parallel, \quad -\omega \sum_{i=1}^{N} m_i s_i \vec{q}_i = \vec{M}_\text{ext}_\perp. \quad (3.26)
\]

Tento zápis druhé impulzové věty je velmi výhodný pro praktické řešení úloh, zejména v situacích, kdy je hmotnost tělesa vzhledem k coby rotace rozložena symetricky, tj. když se výrazy \(m_i s_i \vec{q}_i \) kompenzují, takže je \(\vec{\ell}_{0,\perp} = 0 \). Velmi jednoduchým příkladem takové situace je dvoučásticová soustava s částicemi o hmotnostech \(m_1 \) a \(m_2 \) ležících ve vzdálenostich \(q_1 \) a \(q_2 \) od této coby, přičemž platí \(\frac{q_1}{q_2} = \frac{m_2}{m_1} \), speciálně pro dvě stejně hmotné částice umístěné stejně daleko od coby rotace. Další příklady jsou geometricky symetricky homogenní tělesa rotační kolena coby své geometrické symetrie — válec, kužel, silhouette, apod. V takových případech ovšem musí být \(\vec{M}_\text{ext} = 0 \), jinak by nemohla být splněna podmínka \(\vec{\ell}_{0,\perp} = \vec{M}_\text{ext}_\perp \).

V případě tělesa se symetrickým rozložením hmotnosti vzhledem k coby rotace se druhá impulzová věta redukuje jen na průmět do coby rotace, který lze chápat například jako rovnice pro neznámou úhlovou zrychlení. Její použití za chvíli ukážeme na příkladech. Vektor \(\vec{\ell}_{0,\parallel} \) je někdy, nepříliš vhodné, nazývává momentem hybnosti tělesa vzhledem k coby ose, vektor \(\vec{M}_\text{ext} \) výsledným momentem vnějších sil vzhledem k této coby.
3.2. ROVNOVÁHA A POHYB TUHÝCH TĚLES

Uvažujme nyní o situaci, kdy těleso může rotovat vzhledem k různým osám rovnoběžným s osou \(o \). Jedna z nich má zvláštní význam. Je to ta, která prochází středem hmotnosti tělesa. Známe-li totiž moment setrvačnosti tělesa vzhledem k této speciální ose, označme ji například \(o_0 \), můžeme moment setrvačnosti vzhledem k libovolné ose \(o \) s ní rovnoběžné, tj. \(o \parallel o_0 \), vypočítat pomocí momentu setrvačnosti vzhledem k ose \(o_0 \) a vzdálenosti \(d \) obou ose. S využitím pravé části Obr. 3.13 vyjádříme moment setrvačnosti \(J_o \):

\[
J_o = \sum_{i=1}^{N} m_i q_i^2 = \sum_{i=1}^{N} m_i (\vec{q}_i)^2 = \sum_{i=1}^{N} m_i (\vec{q}_i^2 + \vec{d})^2 = \sum_{i=1}^{N} m_i (\vec{q}_i^2) + \left(\sum_{i=1}^{N} m_i \vec{q}_i \right) \cdot \vec{d} + d^2 \sum_{i=1}^{N} m_i.
\]

Uvědomme si, co znamená výraz \(\sum_{i=1}^{N} m_i \vec{q}_i \) oveř, který vystupuje v prostředním sčítací: Vektor

\[
\vec{r}_0^i = \frac{\sum_{i=1}^{N} m_i \vec{r}_i}{\sum_{i=1}^{N} m_i},
\]

je nulový, neboť je to polohový vektor středu hmotnosti tělesa vzhledem ke středu hmotnosti tělesa \((\vec{r}_i^i, 1, \ldots, N \text{ jsou polohové vektory částic \(J_o \)}, \text{jejich hmotnosti vzhledem je středu hmotnosti,} \vec{r}_i^i = \vec{r}_i - \vec{r}_0) \). Platí proto také \(\sum_{i=1}^{N} m_i \vec{r}_i = \vec{0} \). Vektor \(\sum_{i=1}^{N} m_i \vec{q}_i \) je ovšem průměrem vektorů \(\sum_{i=1}^{N} m_i \vec{r}_i \), v rovině kolmé k ose rotace, je proto také nulový. Pro momenty setrvačnosti \(J_o \) a \(J_{oo} \) vzhledem k rovnoběžným osem \(o \) a \(o_0 \), z nichž osa \(o_0 \) prochází středem hmotnosti tělesa, získáváme Steinerovu větu

\[
J_o = J_{oo} + md^2,
\]

kde \(d \) je vzdálenost osy \(o \) od osy \(o_0 \).

V odstavci 1.1 jsme si definovali tenzor momentu setrvačnosti, reprezentovaný v dané soustavě souřadnic maticí třetího řádu. K jeho zádání jsme tedy pořezovali devět veličin \(J_{ij} \), z nichž pesně šest bylo nezvážených, neboť toto matice byla symetrická, \(J_{ij} = J_{ji} \), \(i, j = 1, 2, 3 \). Na jednotlivé osu co do činění se skalární veličinou ⇒ momentem setrvačnosti vzhledem k ose. Takových ose ovšem může být nekonečně mnoho, stejně jako hodnot momentu setrvačnosti vzhledem k nim. Není to v rozporu s úvahami o tenzoru momentu setrvačnosti? Ukážeme, že nikoli ⇒ moment setrvačnosti vzhledem k libovolné ose \(o \) v dané soustavě souřadnic třeba bodem \(A = (x_A, y_A, z_A) \) a jednotkovým vektorom \(\vec{d} = (a_1, a_2, a_3) \), je možné jednoznačně vytáhnout pomocí bodu \(A \), vektoru \(\vec{d} \) a tenzoru momentu setrvačnosti zadaného v dané soustavě souřadnic. Protože už znamené vztah mezi momenty setrvačnosti vzhledem ke dvěma rovnoběžným osema, z nichž jedna prochází středem hmotnosti tělesa (před chvílí odvozena Steinerovu větu (3.27)), stačí již uvažovat pouze o osech různých směrů procházejících právě středem hmotnosti. Tenzor momentu setrvačnosti \(J \) v soustavě souřadnic \(S = < O; x, y, z \) s počátkem \(O \) ve středu hmotnosti tělesa je reprezentován maticí \(J = (J_{ij}) \), \(i, j = 1, 2, 3 \). Pro momenty hmotnosti tělesa platí vztah (3.21), tj.

\[
\ell_i = \sum_{j=1}^{3} J_{ij} \omega_j, \quad i = 1, 2, 3.
\]

Počtejme průměr momentu hmotnosti do ose \(o \). Uvažme při tom, že \(\vec{d} = \omega \): \(\ell_{0||} = \frac{\ell_{0} \vec{d}}{\omega^2} \left(\ell_{0} \vec{d} \right) \omega \Rightarrow \)

\[
\ell_{0||} = \frac{\ell_{0} \vec{d}}{\omega^2} \left(\ell_{0} \omega \right) \omega \Rightarrow \]

\[
\ell_{0||} = \frac{\ell_{0} \vec{d}}{\omega^2} \left(\ell_{0} \omega \right) \omega \Rightarrow \]
\[J_o = \frac{1}{\omega^2} \sum_{i,j=1}^{3} J_{ij} \omega_i \omega_j = \sum_{i,j=1}^{3} J_{ij} o_i o_j. \] (3.28)

Tento výsledek ve spojení se Steinerovou větou již umožňuje určit moment netvačnosti tělesa vzhledem k jakékoli osi rotace pomocí zadání této osy a tenzoru momentu netvačnosti vzhledem k soustavě souřadnic spojené se středem hmotnosti tělesa. Nej jednodušší způsob zadání tenzoru momentu netvačnosti je samozřejmě se soustavě souřadnic spojené nejen se středem hmotnosti jako počátkem, ale také se souřadnicovými osami ve směru hlavních os tenzoru momentu netvačnosti. V takové soustavě souřadnic se vztah (3.28) zjednoduší na tvar

\[J_o = J_1 o_1^2 + J_2 o_2^2 + J_3 o_3^2. \]

K fyzikálnímu významu tenzoru momentu netvačnosti v diagonálním tvaru se vrátíme ještě v odstavci 3.2.4.

V následujících několika příkladech se ukáže, jak aplikovat závěry týkajících se rotace tuhého tělesa kolem pevné osy, k nimž jsme před chvílí dospěli.

\section*{Příklad 3.9. Závaží na kladce.}

Čistě rotačním pohybem tuhého tělesa kolem pevné osy je například rotace pevné kladky při pohybu závaží zavěšených na laně vedeném přes tuto kladku (viz Obr. 3.14).
3.2. ROVNOVÁHA A POHYB TUHÝCH TĚLES

Obr. 3.14: PEVNÁ Kladka SE ZáVAŽÍMI

Soustava na obrázku je umístěna v homogenním tihovém poli Země (tihové zrychlení je jako obvykle \vec{g}). Hmotnosti závaží jsou m a M, $m < M$, hmotnost kladky je m_k, její poloměr je r. Kladku považujeme za homogenní tuhé těleso, její hmotnost je rozložena symetricky vzhledem k ose otáčení. Předpokládejme dále, že lano po kladce neklouze, je dokonale ohebné a má pevnou délku, a že odporové síly působící jak proti pohybu těles, tak proti otáčení kladky lze zanedbat. Zkušenost samočinně říká, že při pohybu soustavy byde těžší těleso klesat se zrychlením. Dokážeme je spočítat? Označme jako \vec{a}_1, resp. \vec{a}_2 zrychlení závaží m, resp. M, a jako ε úhlové zrychlení kladky (zrychlení středu hmotností
kladky je nulové — to je vazební podmínka, s kterou můžeme počítat již od začátku řešení úlohy). V Obr. 3.14 jsou vyzaženy síly, kterými na jednotlivá tělesa soustavy (obě závaží a kladku) působí jejich okolí.

- Na levé závaží působí Zeně tříhou silou \(\vec{m}\ddot{g} \) a lano tahovou silou \(\vec{T}_1 \).
- Na pravé závaží působí Zeně tříhou silou \(\vec{M}\ddot{g} \) a lano tahovou silou \(\vec{T}_2 \).
- Na kladku působí lano tahovými silami \(-\vec{T}_1 \) a \(-\vec{T}_2 \) na straně levého, resp. pravého závaží a osa v bodě závěsu silou \(\vec{F} \). Silové dvojice \(\vec{T}_1 \) a \(-\vec{T}_1 \), resp. \(\vec{T}_2 \) a \(-\vec{T}_2 \) představují akci a reakci (lano zprostředkovává vzájemné působení klady a závaží).

POZNÁMKA: Působení lana na kladku je poněkud složitější, neboť lano je naplněno po celé své délce a na kladku tedy působí elementárními silami v každém bodě svého kontaktu s ni. Výsledná silově působení lana na kladku však lze po psat silami \(-\vec{T}_1 \) a \(-\vec{T}_2 \) umístěnými podle obrázku v bodech, v nichž se lano od kladky začíná odevzdat.

Druhý Newtonův zákon pro závaží a první impulsová věta pro kladku mají tvar (pro kladku s uvaženým skutečností, že zrychlení jejího středu hmotností je nulové).

\[
\begin{align*}
\vec{m}\ddot{a}_1 &= \vec{m}\ddot{g} + \vec{T}_1, \\
\vec{M}\ddot{a}_2 &= \vec{M}\ddot{g} + \vec{T}_2, \\
\vec{0} &= \vec{m}_k\ddot{g} + \vec{F} - \vec{T}_1 - \vec{T}_2.
\end{align*}
\]

Druhou impulsovou větu pro kladku formulujeme vzhledem k jejímu středu hmotnosti. Jak jsme již konstatovali při formulaci předpokladů úlohy, je hmotnost kladky symetricky rozložena vzhledem k ose její rotace (v Obr. 3.14 pro následné do bodu závěsu kladky). Moment hybnosti kladky má tedy směr osy rotace. Také momenty síl působících na kladku mají tento směr (momenty síl \(-\vec{T}_1 \) a \(-\vec{T}_2 \), nebo jsou nulové (moment tříhou síly \(\vec{M}\ddot{g} \) a síly \(\vec{F} \)). Rovnice (3.26) pro úhelové zrychlení má tvar

\[J_\phi\ddot{\varepsilon} = \vec{M}_{\phi}\ddot{T}_1 + \vec{M}_{\phi}\ddot{T}_2 + \vec{M}\ddot{M}\ddot{\varepsilon} + \vec{M}\ddot{F}. \]

Pohyby závaží se odehrávají pouze ve všechměrem směru (chápeme jako předem stanovenou vazební podmínku). Zvolme směr a orientaci osy \(x \) všechno doleva. Vektory zrychlení a síl mají nemultovou jedinou složku, \(\vec{x}-\vec{y} \). Úhelové zrychlení a nemultové momenty síl mají, jak jsme již konstatovali, směr osy rotace. Zvolme ostře ve směru osy rotace a orientujme ji kladně směrem dopředu. Pokud závaží \(M \) klesá, jak ukazuje obrázek, tj. pro \(M > m \), má úhelové zrychlení kladky složky \(\varepsilon = (0, 0, -\varepsilon) \). Pro složky z výše uvedených rovnic vyplývá

\[
\begin{align*}
ma_{1,x} &= mg - T_1, \\
Ma_{2,x} &= Mg - T_2, \\
0 &= m_k\ddot{g} + F + T_1 + T_2, \\
-J_\phi\ddot{\varepsilon} &= -rT_2 + rT_1.
\end{align*}
\]
3.2. ROVNOVÁHA A POHYB TUHÝCH TĚLES

Tato soustava čtyř rovinc ovšem obsahuje příliš mnoho neznámých. Jsou jimi $a_{1,x}, a_{2,x}, \varepsilon, T_1, T_2$ a F. Pro některé z neznámých však platí vazební podmínky. Zrychlení \ddot{a}_1 a \ddot{a}_2 jsou stejně velká, ale opačně orientovaná, jejich velikost je rovna obvodovému zrychlení kladky a. Platí proto

$$-a_{1,x} = a_{2,x} = a,$$
$$\varepsilon = \frac{a}{r}.$$

Řešením poslední soustavy šesti rovnic, uvážením vztahu pro moment setrvačnosti $J_o = \frac{1}{2}mkr^2$ dostaneme (řešení podrobně proveděte)

$$a = \frac{M - m}{M + m + \frac{1}{2}m_k} g,$$
$$T_1 = mg + \frac{m(M - m)}{M + m + \frac{1}{2}m_k} g,$$
$$T_2 = Mg - \frac{M(M - m)}{M + m + \frac{1}{2}m_k} g,$$
$$F = (m_k + M + m)g - \frac{(M - m)^2}{M + m + \frac{1}{2}m_k} g.$$

Všimněme si ještě situace, kdy je hmotnost kladky zanedbatelná, $m_k = 0$. Pak je zanedbatelný i její moment setrvačnosti, $J_o = 0$. Jaké můžeme čelit v tomto případě výsledky? Dostaneme je samozřejmě dosazením do vztahů, které jsme získali řešením úlohy pro obecný případ, můžeme však také některé z nich ale spoji kvalitativně „odhadnout“:

- Má-li kladka mukový moment setrvačnosti, pak by při jakoli malém momentu sil, které ji roztačí, bylo úhlové zrychlení neomezeně velké. Proto musí být $T_1 = T_2 = T$.
- Shodně tažné síly $-\vec{T}_1$ a $-\vec{T}_2$ „táhají“ kladku dolů, síla \vec{F} nahoru. Tihová síla je muková. Proto $F = 2T$.
- Soustavu závaží bez kladky bychom si mohli ekvivalentně představit i jako závaží na rovném laně, přičemž síla $\vec{M}\vec{g}$ by soustavu tahala dopředu, síla $\vec{m}\vec{g}$ dozadu. Výsledná síla o velikosti $\vec{M}\vec{g} - \vec{m}\vec{g}$ by udělovala zrychlení a celé soustavy o hmotnosti $M + m$, tj. $a = \frac{\vec{M}\vec{g} - \vec{m}\vec{g}}{M + m} g$.
- Uvažujeme-li o každém ze závaží zvláště, vidíme, že závaží m uděluje jeho zrychlení (velikost a, směr vzhůru) síla o velikosti $T - mg$ mříží vzhůru, proto $ma = T - mg$. Podobně pro závaží M platí $Ma = Mg - T$. Zrychlení a však již máme, takže snadno určíme velikost tažných sil $T = \frac{2mM}{M + m} g$.

Tyto výsledky snadno ověříme, dosadíme-li do řešení obecné situace $m_k = 0$ a $J_o = 0$ (proveděte).
Typickým příkladem rotačního pohybu tělesa kolem pevné osy je valení. Valí se sudy, odhaluji se kola automobilu — jednoduše řečeno, valivý pohyb je velmi častý i v praxi. Samozřejmě je na pořád otázka: jaký rotační pohyb kolem pevné osy? Vždy při valení dochází vždy i k pohybu posuvněmu, a je-li tento pohyb zrychlený (třeba při valení sudy s kopcem) neexistuje žádná vztahová soustava, v níž by osa rotace byla pevná. Vzpomínáme si však na jeden z významů středu hmotnosti (odstavec 3.1.3) Druhou impulsovou větu pro dané těleso jsme mohli vztahovat nejen k inerciální vztahové soustavě, ale i k vztahové soustavě, která vůči inerciálnímu soustavám nerotovala, byla však spojena se středem hmotnosti tělesa. Těto vlastnosti středu hmotnosti využijeme i nyní. Osa rotace valícího se tělesa bude procházet právě středem hmotnosti. Řešení takového valivého pohybu si ukážeme v následujícím příkladu.

Příklad 3.10. Valení tukových těles.
Naším úkolem bude určit zrychlení homogenního válcového tělesa, které se valí po nakloněné rovině o úhlu sklonu α v tihovém poli g (Obr. 3.15).

Obr. 3.15: Valení rotačních těles

Předpokládejme, že při valení těleso neprokluzuje (na příkladě třeba rozjíždějícího se automobilu to znamená, že se kola pěkně odhaluji, „nehrabou“). Vzhledem k pozorovateli v neinerciální vztahové soustavě spojené s osou válcového tělesa, avšak takové, že její osy vůči inerciálním soustavám nerotoují, působí na těleso tříhodná síla $\vec{m}\vec{g}$ umístěná ve středu hmotnosti O, tlahková síla nakloněné rovině \vec{N} — ta působí ve stýkajícím bodě nakloněné roviny s tělesem a statická třecí síla \vec{T} působí rovinně v tomto bodě. Statická třecí síla zabrání smykání tělesa po podložce. Protože je vztahová soustava neinerciální, je třeba vzít v úvahu ještě fiktivní sílu $\vec{F} = -m\vec{a}$, kde \vec{a} je unášivé zrychlení. To je rovno zrychlení středu hmotnosti tělesa vzhledem k inerciálnímu vztahovým soustavám. Vztáhneme-li druhou impulsovou větu k bodu O a uvážíme-li, že rozložení hmotnosti tělesa je vzhledem k jeho osy symetrické, můžeme impulsový věty zapsat ve tvaru

$$m\vec{a} + \vec{N} + \vec{T} - m\vec{g} = \vec{0}, \quad J_\alpha \vec{\varepsilon} = \vec{M}_F.$$

Momenty tihové a tlahkové sily vzhledem k bodu O jsou totiž nulové. Stejné vektorové rovnice dostaneme, například, na rozdíl od předchozí volby, první impulsovou větu vzhledem k (libovolný) inerciální vztahové soustavě. Ve hře pak nebude fiktivní síla, zato střed hmotnosti tělesa se bude vůči inerciální soustavě pohybovat se zrychlením \vec{a}. Zjistíme první impulsovou větu má tvar

$$m\vec{a} = m\vec{g} \sin \alpha - \vec{T},$$

zapis druhé impulsové věty zůstává stejný. Soutavu souřadnic zvolíme podle obrázku a ve složkách můžeme psát

$$ma = mg \sin \alpha - T,$$
Získaná soustava tří rovnic obsahuje čtyři neznámé. Máme k dispozici nějakou vezebnou podmínku? Ano — je to požadavek valení bez klouzání, pomocí něhož určíme vztah mezi úhlovým zrychlením a zrychlením středů hmotností. Obecně jsou sice tyto veličiny nezávislé: představíme-li si například auto rozjížďící se na zedovatelném parkovišti, musíme připustit, že při přídání plynu se kola mechnou velmi rychle roztočit (značné úhlové zrychlení kol), zatímco vůz se skoro nepohne (malé zrychlení středu hmotností). Při „pocitivém“ odvalování však bude zrychlení středu hmotnosti stejně velké jako obvodové zrychlení $a_{ab} = a$. Na druhé straně však je obvodové zrychlení vyjádřeno pomocí úhlového vztahu $a_{ab} = r_\alpha$, kde r je poloměr válcového tělesa. K soustavě tří rovnic můžeme tedy přidat rovnici čtvrté,

$$a = r_\alpha.$$

Řešení soustavy již je snadné, výsledky následují:

$$a = \frac{mr^2}{mr^2 + J_0} \cdot g \sin \alpha,$$

$$N = mg \cos \alpha,$$

$$T = \frac{mgJ_0 \sin \alpha}{mr^2 + J_0}.$$

Z výsledného vztahu pro zrychlení středu hmotností tělesa vidíme, že α je moment setrvačnosti větší (hmotnost tělesa je rozložena dále od jeho ose), tím je těleso „lépejším“; jeho zrychlení je menší. Kdybychom tedy položili na vřele nakloněné rovniny tří válců o stejné hmotnosti m a stejném vnějším poloměru r, z nichž jeden by byl plný (moment setrvačnosti $J_0 = \frac{1}{4}mr^2$), druhý dutý o vnitřním poloměru r' (moment setrvačnosti $J_0 = \frac{1}{4}m(r^2 + r'^2)$) a třetí prstenec (moment setrvačnosti $J_0 = mr^2$). V „závoděch“ na nakloněné rovině by zvítězil plný válec, druhé místo by získal válec dutý a prohrál by prstenec. Zkuste zjistit, jak by na tom byla koule, jejíž moment setrvačnosti je $J_0 = \frac{2}{5}mr^2$. ♠

Další typickou úlohou, v níž se jedná o valení bez klouzání, tj. skložení posuvného a otáčivého polohy s vezebnou podmínkou, ukazuje další příklad. Nejde však o valení po pevné podložce, ale o odmotávání lanka navínutého na cívce.

Příklad 3.11. Cívka na laně — jojo.

Známná hračka „jojo“ představuje lhůtu homogenní cívku o vnitřním poloměru r a vnějším poloměru R. Určíme, s jakým zrychlením se pohybuje střed hmotnosti cívky a jakou silou je napnuté světlé lanko. Současně zjistíme, jaké veličiny jsou kromě poloměrů cívky ještě nutné zadal, aby bylo možné úluhu vyřešit. Předpokládejme, že jojo volně vypustíme z ruky. Směr jeho otáčení ukazuje obr. 3.16 vlevo.
Na cívkou hmotnosti M působí těžká síla $\vec{F}_G = Mg$ s působením ve středu hmotnosti cívky a tahová síla lanka \vec{T}; jejíž působení můžeme umístit do bodu, v němž se vůbec část lanka dostává do kontaktu s cívkou (viz Obr. 3.16). (Ve skutečnosti je působení lanka na cívkou složitější, jak jsme výložili v poznámce v příkladu 3.9.)

\[m\vec{a} = \vec{F}_G + \vec{T}, \]
\[J\vec{\varepsilon} = \vec{M}_G + \vec{M}_T. \]

\(J \) je moment setrvačnosti cívky vzhledem k ose její geometrické symetrie. Moment třídu síly je nulový, moment tahové síly má směr osy rotace a je orientován dopředu, tj. v kladném směru ose z. Pro z-ovou složku první impulsové věty, resp. z-ovou složku druhé impulsové věty (ostatní složky síl, resp. momentů jsou nulové) tak platí

\[Ma = Mg - T, \quad (3.29) \]
\[-J\varepsilon = -Tr, \quad (3.30) \]
3.2. ROVNOLÁHA A POHYB TŮHÝCH TĚLES

kde a, resp. ε je velikost zrychlení středu hmotnosti válečka $\vec{a} = (a, 0, 0)$, resp. velikost úhlového zrychlení $\vec{\varepsilon} = (0, 0, -\varepsilon)$. Máme tak dvě rovnice pro tři neznámé, a, ε a T. Budeme proto mstě přijmout nějaké dodatečné předpoklady — vazební podmínky. Předpokládáme-li jako obvykle, že lanko je nepružné, je obvodové zrychlení otáčivého pohybu cívky rovno velikosti zrychlení jejího středu hmotnosti (tuto podmínku jsme uplatnili již při řešení předchozího příkladu). Z ní vyplývá vztah mezi zrychlením středu hmotnosti cívky a úhlovým zrychlením

$$\varepsilon = \frac{a}{r},$$

Z rovnice (3.29), (3.30) a (3.31) již dostáváme výsledky

$$a = \frac{Mg r^2}{J + Mr^2}, \quad T = \frac{MgJ}{J + Mr^2}.$$

Z výsledků vidíme, že je nutné znát hmotnost joja, jeho vnitřní poloměr a jeho moment setrvačnosti. Dokáží iný moment setrvačnosti dokáží vypočítat? A proč jsme zadávali vnější poloměr cívky R, když ve výsledku nevystupuje? Promyslete, jak by se řešení této jednoduché úlohy zkomplikovalo, kdybychom upustili od předpokladu, že lanko má stále stejný směr?

Pohyb „joja“, který jsme právě vyřešili, je ovšem jednodušší než pohyb při skutečném zacházení s touto hračkou. Víme, že při hraní není lanko na povětšině závěru, ale držíme je v ruce, takže tahová síla může být a také je praveřná. Jojo jest nahořu a dole — v tom spočívá obliba této hračky. Zkusme popsát nejednodušší situaci, kdy se jojo vrátí. Tato situace nastane i při povětšině závěru, když se lanko povětšině připojené k cívce upne pravou pravou část Obr. 3.16. Vektorový zápis impulsových vět je stejně jako při pohybu cívky směrem dolů, orientace momentu tahové síly je však nyní opačná, a proto úhlové zrychlení ε směřuje dopředu, ve směru kladné osy z, tj. $\vec{\varepsilon} = (0, 0, \varepsilon)$. Rotační pohyb i pohyb středu hmotnosti se zpomaluji, vektor zrychlení středu hmotnosti má složky $\vec{a} = (a, 0, 0)$. Přitom stále platí vazební podmínka (3.31). Zápis impulsových vět ve složkách je stejný se situací, kdy se cívka pohybuje dolů, platí rovnice (3.29), (3.30) a (3.31), stejně jako je proto i řešení.

Následující příklad je obdobný, je však ponechali obtížnější.

Příklad 3.12. Jojo na kladce.

Přes válcovou kladku o hmotnosti m_k a poloměru r_k je lankem spojén kvádr o hmotnosti m a válc o hmotnosti M a poloměru R. Lanko je navíjeno na obvod válečka. Předpokládáme, že je nepružné, má zanedbatelnou hmotnost a svislý směr, po obvodu válečka neklouže. Tělesa jsou tuhá a homogenní, k odporu vzduchu nepříliš činí. Určíme zrychlení středu hmotnosti válečka, zrychlení kvádu a všechny síly působící na soustavu. Podobně jako u její předpokládáme, že soustavu pouze uvolníme z klidu, v němž ji držíme dodatečnými sílami.
Než zformulujeme impulsové věty, uvědomíme si, jaké síly na jednotlivá tělesa působí (viz Obr. 3.17).

Obr. 3.17: Cívka na laně vedeném přes kládku

Na kvádr působí tři síly $m\vec{g}$ umístěná v jeho středu hmotnosti a tahová síla lanka \vec{T}_1 v bodě uchycení lanka. (V případě kvádru, který v této úloze můžeme
3.2. ROVNOVÁHA A POHYB TUHÝCH TĚLES

pokládat za hmotný bod, neboť jeho pohyb je pouze translační, specifikujeme působíště síl pouze pro úplnost.) Na válec působí tříhává síla
\(M \vec{g} \) umístěná v jeho středu hmotnosti a tažová síla lanka \(\vec{T}_2 \) podle obružku (viz též komentář v poznámce v příkladu 3.9). Na kladku působí v jejím středu hmotnosti tříhává síla
\(m_k \vec{g} \) po stranách jejího obvodu tažové síly lanka \(-\vec{T}_1 \) a \(-\vec{T}_2 \) a v bodě závěsu tažová síla \(\vec{F} \). Například druhý Newtonův zákon (první impulsové větu) pro kvádr a obě impulsové věty pro válec a kladku. Soustavu souřadnic zvětšíme jako obvykle — osu \(x \) směrem dolů, osu \(y \) doprava a osu \(z \) dopředu. Vztázným bodem pro výpočet momentů v případě kladky bude bod jejího závěsu (přesněji kterýkoledí bod závěsné osy, která je současné osou rotace kladky), vztázným bodem pro výpočet momentů v případě válece bude kterykoli bod na jeho geometrické ose, která je zároveň osou jeho rotace. První impulsové větu formulujeme pro všechna tělesa v interaktivní vztázné soustavě. Platí

\[m \vec{a} = m \vec{g} + \vec{T}_1, \]
\[M \vec{A} = M \vec{g} + \vec{T}_2, \]
\[J \vec{\varepsilon} = M \vec{g} + \vec{M}_\vec{F} = \vec{M}_\vec{F}, \]
\[\vec{0} = m_k \vec{g} - \vec{T}_1 - \vec{T}_2 + \vec{F}, \]
\[J_k \varepsilon_k = M m_k \vec{g} - \vec{M}_\vec{F} + \vec{M}_\vec{F} = \vec{M}_\vec{F}. \]

V předchozích rovnicích je pro moment setrvávacích válece vzhledem j jeho osu použito symbolu \(J \), moment setrvávacích kladky vzhledem k její ose je označen \(J_k \). Platí

\[J = \frac{1}{2} M r^2, \quad J_k = \frac{1}{2} m_k r_k^2. \]

Soustavové zápisy uvedeme již jen pro ty složky rovnic, které nejsou a priori nulové,

\[m a_x = m g - T_1, \]
\[M A_x = M g - T_2, \]
\[J \varepsilon_z = -R T_2, \]
\[0 = m_k g + T_1 + T_2 - F, \]
\[J_k (\varepsilon_k)_z = -r_k T_2 + r_k T_1. \]

Podobně jako v předchozích situacích potřebujeme vazební podmínky, neboť předchozí soustava pěti rovnic obsahuje sedm neznámých, \(a_x, A_x, \varepsilon_z, (\varepsilon_k)_z, T_1, T_2 \) a \(F \). Z požadavku, aby lanko po kladeck neklozalo, plyne vazba mezi zrychlením kvádr a úhlovým zrychlením kladky. Lanko nemá klouzat ani po váleč, takže velikost relačního zrychlení jeho středu hmotnosti vzhledem k lanku, které se z váleč odvíjí, je rovna obvodovému zrychlení při jeho rotaci. Toto relační zrychlení je \(\vec{a}_{rel} = \vec{A} - (-\vec{a}) = \vec{A} + \vec{a} \) (zrychlení tělesa \(m \) je \(\vec{a} \), takže zrychlení bodů svislého nepružného lanka na protější straně je \(-\vec{a} \)),

\[\varepsilon_k = \frac{a}{r_k}, \quad \varepsilon = \left| \frac{\vec{A} + \vec{a}}{R} \right|. \]
V polohových rovnících (3.33) však nevystupují velikosti zrychlení a úhlových zrychlení, ale jejich složky. Určíme jejich znaménka. Moment tahové siny \vec{T}_2, který podle třetí z vektorových rovnic (3.32) určuje úhlové zrychlení $\vec{\varepsilon}$, směřuje dozadu. Proto je $\varepsilon_z < 0$, tj. $\vec{\varepsilon} = (0, 0, -\varepsilon)$. Pro určení znaménka složky $(\varepsilon_k)_z$ musíme předpokládat směr urychlování otáčivého pohybu klády. Rozsudeme všechny možné situace.

Situace 1. Dejme tomu, že se kládka roztáčí po směru hodinových ručiček. Pak její úhlové zrychlení směřuje dozadu, tj. $(\varepsilon_k)_z = -\varepsilon_k$. V takovém případě směřuje zrychlení tělesa m vzhůru, tj. $a_x = -a$, a zrychlení váze dolů, $A_x = A$.

Velikost relativního zrychlení \vec{a}_{rel} je $A - a$. Po dosazení za ε_z a $(\varepsilon_k)_z$ z vazebních podmínek, dosazení za momenty setrvačnosti a malé úpravě dostáváme pět rovnic pro pět neznámých, a, A, T_1, T_2 a \vec{F}:

$$-ma = mg - T_1,$$

$$MA = Mg - T_2,$$

$$\frac{1}{2}M(A - a) = T_2,$$

$$\frac{1}{2}mka = T_2 - T_1.$$

Řešením této soustavy dostaneme

$$A = 2g \frac{mk + m + M}{3mk + 6m + 2M},$$

$$a = 2g \frac{M - 3m}{3mk + 6m + 2M},$$

$$T_1 = mg \frac{3mk + 4M}{3mk + 6m + 2M},$$

$$T_2 = Mg \frac{mk + 4m}{3mk + 6m + 2M},$$

$$F = mkg + T_1 + T_2.$$

Z výsledků vidíme, že předpoklad o směru roztáčení klády je správný pro $M \geq 3m$. Proveďme ještě orientační „kontrolu správnosti“ našich výsledků — nejde o skutečnou dokonalou kontrolu, ale o použití ponechádaných výsledků vztahů pro jisté možné situace, v nichž dokážeme správnost výsledků odhadnout.

- „Nekonečněhmotná“ kládka, tj. $m_k \to \infty$: Jedná se o situaci, kdy s kládku nepůjde ani hodně velkými silami roztačit. Očekáváme, že zrychlení kvádrů bude nulové, síla napínající lanko, na němž kvádr visí, bude rovna $-mg$. Zrychlení válce bude rovněž zrychlení joja z předchozího příkladu, jehož moment setrvačnosti je $\frac{1}{2}MR^2$, tj. $\vec{A} = \frac{2}{3}\vec{g}$. A skutečně, ze vztahů (3.34)
snadno určíme limity

\[
\lim_{m_k \to \infty} a = 0, \quad \lim_{m_k \to \infty} A = \frac{2}{3}g, \quad \lim_{m_k \to \infty} T_1 = mg,
\]
jejichž hodnoty potvrzují náš odhad.

• „Nekonečněžmotný“ kvádr, tj. \(m \to \infty \): Očekáváme, že takový kvádr bude padat s třílovým zrychlením, neboť tahová síla lanka \(T_1 \) nemůže nekonečně velkou třílovcí sílu \(mg \) nijak ovlivnit. Lanko na straně válce se pohybuje se zrychlením \(-\ddot{g} \) a stříd hmotností válce by měl vůči lanku padat se zrychlením \(\frac{2}{3}g \). Mělký, proto v limitě vyjít \(\ddot{A} = \frac{1}{3}g \). Výsledný moment síl \(-T_1 - T_2 \) by měl být takový, aby kladku roztáčel s obvodovým zrychlením \(g \), tj. \((T_1 - T_2) = \frac{1}{2}m_k g \). Výpočet limit ukáže, že

\[
\lim_{m \to \infty} a = g, \quad \lim_{m \to \infty} A = \frac{1}{3}g, \quad \lim_{m \to \infty} (T_1 - T_2) = \frac{g}{6}(3m_k + 4M) - \frac{2Mg}{3} = \frac{1}{2}m_k g.
\]

Odhad se opět ukázal správným.

• „Žmotná“ kladka, tj. \(m_k = 0 \): Žmotná kladka by měla nulový moment setrvačnosti. Proto musí být výsledný moment síl, které ji roztačejí, nulový, jinak by její úholové zrychlení bylo neomezeně velké. V limitě \(m_k \to 0 \) by proto měl rozdíl velikostí síl \(T_1 \) a \(T_2 \) vyjít nulový. Už použitím dosazením \(m_k = 0 \) dostaneme

\[
T_1 = T_2 = \frac{2mM}{3m + Mg}.
\]

Opět jsme očekávaný výsledek potvrdili.

• Nakonec si ještě všimněme případu, kdy \(3m = M \). Ze vztlahů pro řešení (3.34) dostáváme

\[
a = 0, \quad A = \frac{2}{3}g, \quad T_1 = T_2 = mg.
\]

Tento výsledek znamená, že se soustava chová jako jojo na pevném závěsu — kvádr vlevo vyvažuje soustavu právě tak, že je v kladu, kladka se netočí (popřípadě se kvádr pohybuje rovnoměrně a kladka se rovnoměrně otáčí).

\textbf{Situation 2.} Pokud \(M \geq 3m \) nerovnost není splněna, musíme uvážit opačný směr roztačení kladky. Závaží (kvádr) se pak zrychluje směrem dolů, tj. \(a_x = a \). Body svislého lanka na straně válce se pohybují se zrychlením \(-\ddot{a} \). Úhlové zrychlení kladky má směr kladné číslo \(z \), tj. \((\varepsilon_k)_z = \ddot{\varepsilon}_k = \frac{a_x}{r_k} \). Úhlové zrychlení válce je opět orientováno ve směru záporné číslo \(z \), souhlasně s momentem \(\bar{M}_x \), tahové síly \(T_2 \), jehož orientace je stejná jako v předchozím případě. Obvodové zrychlení válce je \(a + A \), vazebná podmínka má tvar \(\varepsilon = \frac{a + A}{r} \). Zapišeme pohybové rovnice ve složkách a vyřešíme je, rozbor fyzikálního významu výsledků ponecháme čtenáři.
První čtyři z pohybových rovnic (3.33) budou mít po dosazení vazebních podmínek a momentů setrvačnosti tvar

\[
\begin{align*}
ma &= mg - T_1, \\
MA &= Mg - T_2, \\
\frac{1}{2}M(a + A) &= T_2, \\
\frac{1}{2}ma &= T_1 - T_2.
\end{align*}
\]

Jejich řešením je shodné s (3.34) az na vztah pro a, kde je nyní v čitatele výraz \(3m - M\).

Příklad 3.13. Fyzické a reversní kyvadlo.

Pohybem tuhého tělesa kolem pevné osy je také kníhatý pohyb tzv. fyzického kyvadla. Jde o soustavu znázorněnou na Obr. 3.18.

Obr. 3.18: Fyzické a reversní kyvadlo

Na kyvadlo působí téžová síla \(m\vec{g}\), kterou, jak víme z odstavce 3.1.3, můžeme umístit do středu hmotnosti kyvadla, a tahová síla závěsu \(\vec{F}\) v bodě \(O\). Osa rotace je kolmá k rovině, v níž kyvadlo kníhá. Její polohu je vhodné zvolit tak, aby procházela buď bodem \(O\), nebo středem hmotnosti. První volba výpočet značně zjednoduší, neboť v bodě \(O\) přímo působí \(\vec{F}\). Usnadní spočítává v tom, že moment této zatím neznámé síly vzhledem k bodu \(O\) je nulový. Pohybovou rovnici kyvadla pak dostaneme ze samotné druhé impulsové věty, při jejíž formulaci nesnímme zapomenět, že moment setrvačností kyvadla vzhledem k ose \(O\) se řídí Steinerovou větou, \(J_o = J_{oSH} + ml^2\). Symbolem \(\ell\) jsme označili vzdálenost bodu \(O\) od středu hmotnosti. Druhá impulsová věta má tvar \(J_o\vec{\omega} = \vec{M}_{\vec{g}}\). Zvolíme-li ose z soustavy součástí kolmou k rovině kníhut kyvadla a namíříme-li ji například dopředu, dostaneme pro jedinou nemovou složku vektorů na levé a pravé straně přechodí vektorové rovnice (z-ovou) vztah

\[
(J_{oSH} + ml^2)\vec{\varepsilon} = -mg\ell \sin \varphi,
\]

kde \(\varphi\) je úhlová výchylka kyvadla, vyznačená rovněž v obrázku. Pro malé kníhuty využíváme aproximace \(\sin \varphi \approx \varphi\), podobně jako jsme to provedli u matematického kyvadla. Dostaneme pohybovou rovnici, jejíž řešení už dokážeme rovnou napsat a určit periodu kníhut kyvadla (viz odstavec 2.4.2);

\[
\ddot{\varphi} + \frac{mg\ell}{J_{oSH} + ml^2} \varphi = 0, \quad \omega^2 = \frac{mg\ell}{J_{oSH} + ml^2}, \quad T = 2\pi \sqrt{\frac{J_{oSH} + ml^2}{mg\ell}}. \quad (3.36)
\]
3.2. ROVNOVÁHA A POHYB TUHÝCH TĚLES

Matematické kyvadlo je samozřejmě speciálním případem obecné situace, moment setrvačnosti vzhledem k ose procházející kuličkou kyvadla (hmotným bodem je nulový). Dosazením \(J_{OS} = 0 \) do vztahů (3.36) skutečně dostaneme odpovídající vztahy pro matematické kyvadlo, jak jsme je odvodili v příkladu 2.10.

Problém fyzického kyvadla jsme však ještě nevyřešili v úplnosti. Je ještě třeba určit časový průběh sily, již působí na kyvadlo závěs. K tomu stačí formulovat první impulsovou větu. Označme jako obvykle zrychlení středu hmotnosti kyvadla \(\ddot{a} \). Platí \(\ddot{a} = mg + \ddot{F} \). K rozkladu do složek použijeme, jak je u polohy pokračovat zvukem (a střed hmotnosti se po kružní polohy), tečnu a normálu. Pak

\[
\begin{align*}
ma_t &= -mg \sin \varphi + F_t \quad \Rightarrow \quad F_t = m\ell \dot{\varphi} + mg \sin \varphi = \frac{J_{OS} m g \sin \varphi}{J_{OS} + m \ell^2}, \\
ma_n &= -mg \cos \varphi + F_n \quad \Rightarrow \quad F_n = m\varphi^2 \ell + mg \cos \varphi,
\end{align*}
\]

kde \(\varphi(t) \) získáme řešením polyněmové rovnice (v approximaci malých výchylek, kterou také můžeme použít při vyjádření složek síly \(\ddot{F} \)).

A ještě pro pořádek a prokázání ověření, že vztáhneme-li druhou impulsovou větu k ose procházející středem hmotnosti kyvadla, dostaneme stejný výsledek. Úhlové zrychlení \(\ddot{\varepsilon} \) popisuje čistou rotaci, proto bude vzhledem k oběma osám stejná. Druhá impulsová věta má tvar

\[
J_{OS} \ddot{\varepsilon} = M_{\ddot{F}} \quad \Rightarrow \quad J_{OS} \ddot{\varepsilon} = -F_t \ell.
\]

Dosadíme-li za \(F_t \) z první impulsové věty (viz výše), dostaneme

\[
J_{OS} \ddot{\varepsilon} = -\frac{J_{OS} m g \ell \sin \varphi}{J_{OS} + m \ell^2} \quad \Rightarrow \quad (J_{OS} + m \ell^2) \ddot{\varepsilon} + m g \ell \sin \varphi = 0,
\]

a to je očekávaná polyněmova rovnice (3.36).

Pohyb fyzického kyvadla se vyznačuje zajímavostmi. Dejme tomu, že si předem určíme, s jakou periodou má kyvadlo ukrít a budeme hledat, jak daleko od středu hmotnosti umístit zázvěs. Znenaně to, že vztah pro periodu uvedený v (3.36) chápeme jako rovnici pro neznámou \(\ell \). Tato rovnice je kvadratická. Pro zjednodušení zápisu v ní označme moment setrvačnosti \(J_{OS} \) jednoduše písmenem J. Platí

\[
T = 2\pi \sqrt{\frac{J + m \ell^2}{mg\ell}} \quad \Rightarrow \quad \ell^2 - \frac{g T^2}{4\pi^2} \ell + \frac{J}{m} = 0.
\]

Ze známých vztahů pro kořeny \(x_1 \) a \(x_2 \) kvadratické rovnice \(x^2 + px + q = 0 \), \(x_1 + x_2 = -p \), \(x_1 x_2 = q \) dostaneme

\[
\ell_1 + \ell_2 = \frac{g T^2}{4\pi^2}, \quad \ell_1 \ell_2 = \frac{J}{m}.
\]
Z výsledků je vidět, že kolem libovolné osy rovnoběžné s osou \(o_0 \) a vedené ve vzdálenosti \(\ell_1 \) nebo \(\ell_2 \) od osy \(o_0 \) bude kyvadlo klidat s periodou \(T \). Této vlastnosti je využito u tzv. reversního kyvadla. Je znázorněno v pravé části Obr. 3.18. Budy závěs \(O_1 \) a \(O_2 \) mají pevnou vzdálenost \(\ell \) — v praxi jsou realizovány běžky, které se umísťují do závěsného lůžka. Závaží \(m \) je posuvné, pomocí jeho posuvů lze posouvat střed hmotnosti kyvadla tak, aby doba kmitu vzudelem k osám \(o_1 \) a \(o_2 \) byla stejná. Ze vztahu mezi periodou \(T \), a vzdáleností \(\ell = \ell_1 + \ell_2 \), tj. mezi veličinami, které lze změřit s poněkud dobrou přesností (při standardních technickém provedení kyvadla cca 0, 1 %), můžeme určit třívrch zrychlění,

\[
\ell = \frac{gT^2}{4\pi^2} \implies g = \frac{4\pi^2\ell}{T^2},
\]

rovněž s dobrou relační přesností, řádu 0, 5 %.

Příklad 3.14. Průjezd zatáčkou.

Obvyklá a značně zjednodušená otázka, jak rychle smí ještě motocyklistu projít plochou kruhovou zatáčkou o daném poloměru \(R \), aby nedostal snyk, se v učebnicích často řeší pro aproximaci motocyklisty hmotným bodem. Takto odpovídá nákresu v levé části Obr. 3.19. Úvaha bývá následující: Na motocyklistu působí třívrch síla \(m\vec{g} \) tlaková síla podložky \(\vec{N} \) a statická třečí síla \(\vec{T}_s \). Za předpokladu, že průjezd zatáčkou je rovnoměrný, je výslednice těchto sil právě potřebnou silou dostředivou, tj.

\[
m \frac{v^2}{R} \vec{n} = m\vec{g} + \vec{N} + \vec{T}_s,
\]

kde \(\vec{n} \) je jednotkový vektor hlavní normály k trajektorii. Z této rovnice je zřejmé, že třívrchová a tlaková síla se kompenzují a statická třečí síla sama představuje dostředivou sílu. Platí

\[
N = mg, \quad m \frac{v^2}{R} = T_s.
\]

Aby nedošlo ke snykůmu, nesmí hodnota \(T_s \), závislá na rychlosti, překročit maximální přípustnou velikost \(T_{s,max} = Nf_s = mgf_s \), kde \(f_s \) je koeficient statické třeči síly. Podmínka omezujející rychlost má proto nakonec tvar

\[
v \leq \sqrt{2gRf_s} \approx 14, 6 \text{ m s}^{-1}, \quad \text{ resp. } 11, 7 \text{ m s}^{-1}
\]

pro průjezd zatáčkou o poloměru \(R = 40 \text{ m} \) na suchém \((f_s = 0, 55) \), resp. mokrém \((f_s = 0, 35) \) asfaltu. Pro třívrchové zrychlění jsme použili hodnotu \(g = 9, 8 \text{ m s}^{-2} \) a protože jde o hodnoty, které nemají být překročeny, zaokrouhlovali jsme výsledky do třetího místě. Mokrou zatáčku tak projede motorista bezpečně při ztrátě coby o 42 km h\(^{-1}\), v suché zatáčce může jet padesátou (55,6 km h\(^{-1}\)).

(Z výsledků je zde vidět, proč zkušení řidiči zatáčku tzv. „řezou“. Zvětšují tím poloměr křivosti zatáčky a mohou tak ještě rychleji.)

Zdá se, že jezdce na motocycle můžeme modelovat hmotným bodem a druhou impulsovou větu ani nepotřebujeme. Ta však tato úvaha správná, či přesná?
3.2. ROVNOVÁHA A POHYB TUHÝCH TĚLES

OBR. 3.19: PRŮJEZD PLOCHOU ZATÁČKOU POPRVÉ

Při sledování závodů na ploché dráze i při pozorování motocyklistů na obyčejné silnicí vidíme, že se motorista v zatáčce naklání. Model hmotného bodu nebude zřejmě tak zcela výstižný. Situaci ukazuje obr. 3.19 vpravo. Za soustavu (těleso) považujeme jezdec a motorkou a předpokládáme, že toto modelové těleso je tuhé. Aplikace první impulsové věty nás přiveze ke stejnému výsledku pro omezení rychlosti, jako jsme získali pro hmotný bod. Druhá impulsová věta umožní zjistit úhel sklonu \(\theta \). Jednoduchý postup určení tohoto úhlu, který najdeme ve standardních učebnících, vychází z požadavku, aby přímka, v níž leží součet vázaných vektorů \(\vec{N} \) a \(\vec{T}_s \), procházela středem hmotností tělesa. Tím je zajištěno, že výsledný moment vnešních sil působících na těleso je nulový. Pro úhel \(\theta \) dostaneme přímo z obrázku vztah

\[
\tan \theta = \frac{N}{T_s} = \frac{mg}{T_s} \geq \frac{1}{\text{f}}.
\]

Z výsledku je vidět, že při rychlejším průjezdu zatáčku musí být stojí víc nakloněn, úhel sklonu však nesmí klesnout pod jistou mezí hodnotu statickým koeficientem tření. Projíždě-li motocyklist za právě maximální přípustné rychlosti, je tangenta úhlu sklonu rovna přerázené hodnotě tohoto koeficientu. Již z takového aspektu odpovídá zhruba úhel 61°, na mokrém 71°.

Položme si však znovu otázku, zda předchozí, chtěli jsme modelu hmotného bodu zřízený přístup, je zcela správný, popřípadě je-li již nyní dostatečně přesný. Jedna z nepřesností je vidět okamžitě — skutečný poloměr kružnice, po které se pohybuje střed hmotnosti tělesa, není \(R \), nýbrž \(R - \frac{1}{2} \cos \theta \), kde \(L \) je délka tělesa za předpokladu jeho nahrazení modelem tyče. V praxi je ovšem délka \(L \) zanedbatelná vzhledem k \(R \), takže výsledek je v rozumné aproximaci v pořadí. Závaznější je však chyba třeby fyzikální úvaze: Základem pro stanovení úhlu náklonu motocyklisty byl počátek, aby výsledný moment působících vnějších sil vzhledem ke středu hmotnosti byl nulový. Podle druhé impulsové věty by to znamenalo, že se moment hybnosti tělesa (jak víme, tvořeného jezdcem na motocyklu) nemění, tak tomu ale ve skutečnosti není — těleso, které můžeme modelovat těržba homogenní a tuhou nakloněnou tyčí délce \(L \), se zároveň otáčí kolem svislé osy procházející středem hmotnosti (běžen kraje jednoho nýbrž tak se kolem této osy otočilo jednou). Výsledky, které jsme získali, však nejsou úplně špatné — v praktických situacích, kdy rozměry tělesa (konkrétně výška jezdec na motocyklu) jsou zanedbatelné vzhledem k poloměru zatáčky, jsou dobrou aproximací skutečnosti.

Pokud se předchozím konstatováním o aproximativních výsledcích nespokojíme, můžeme zjistit, jaký vliv na ně mají výše zmíněné chyby. Pro podrobnější popis polyfyzického vzdálenou soustavu \(S \) podle Obr. 3.20.
Obr. 3.26: Průjezd plochou zatáčkou podruhé

Počítáme soustavu součástí O je ve středu hmotnosti tělesa. Osa z je však a osa y můžeme vpravo, jak je vypočteno již v Osn. 3.19. Osa z značíme dopředu. Jestliže v okamžiku \(t = 0 \) má bod kontaktu tělesa v podložkou součástkou \((0, 0, 0)\), pak v okamžiku \(t \) však průběh půdrysykceho průměru bodu O a osou u úhel \(\varphi = \omega t \). Tato soustava, spojená se středem hmotnosti tělesa, je neinvertibilní, vzhledem k invertibilním soustavám však nerovná. Splňuje proto požadavky pro formulaci druhé impulsové věty ve formálně stejném tvaru jako v soustavě invertibilní (víz odsazec 3.1.3). V levé části Osn. 3.10 je prostorový nákres, v pravé části předpisy. Pozor na význam symbolů v obrázcích. V bodě \(A \) je obecný hmotný element tyče, vzhledem k soustavě \(S \) má plochový vektor

\[
\vec{r}_A = (g_A \cos \theta \sin \omega t, g_A \cos \theta \cos \omega t, g_A \sin \theta), \quad \text{kde} \quad g_A = OA \in \left(-\frac{L}{2}, \frac{L}{2} \right).
\]

Okamžitá rychlost tohoto elementu vzhledem k soustavě \(S \) je

\[
\vec{v}_A = (\omega g_A \cos \theta \cos \omega t, -\omega g_A \cos \theta \sin \omega t, 0), \quad \text{kde} \quad g_A \cos \theta = O_A A_0.
\]

Rychlost středu hmotnosti vzhledem k invertibilní vtažné soustavě označme jako v předcházejících úvahách \(\vec{v} \). (V Osn. 3.20 není zakreslena, aby se v něm nemohla označit vektorů vzhledem k různým vtažným soustavám.)

První impulsovanou větu musíme samořešitě formulovat vzhledem k invertibilní vtažné soustavě. Plát, obdobně jako v předchozích úvahách,

\[
\frac{m \omega^2}{R - \frac{L}{2} \cos \theta} \vec{n}_A = m \vec{g} + \vec{N}_A + \vec{T}_A \implies \frac{m \omega^2}{R - \frac{L}{2} \cos \theta} \vec{N}_A = T_A, \quad N = mg,
\]

zplnoměří spočívá v tom, že jsou vznikají úvahu skutečný poloměr kružnice, po které se pokládá střed hmotnosti tělesa.

Nyní formulujeme druhou impulsovanou větu vzhledem k neinvertibilní vtažné soustavě \(S \). Moment hybnosti elementu vzhledem k této soustavě je

\[
d\vec{r}_A = \vec{r}_A \times \vec{v}_A \, dt = s S (\omega g_A^2 \sin \theta \cos \theta \sin \omega t, \omega g_A^2 \sin \theta \cos \theta \cos \omega t, -\omega g_A^2 \cos^2 \theta) \, dt_A,
\]

kde \(s \) je hustota tyče a \(S \) její průřez. Moment hybnosti celé tyče pak snadno vypočteme integrací podle proměnné \(g_A \) v intervalu \((-L/2, L/2),\)

\[
\vec{\omega} = \frac{1}{12} mL^2 \omega (\sin \theta \cos \theta \sin \omega t, \sin \theta \cos \theta \cos \omega t, -\cos^2 \theta).
\]

Derivováním podle času dostaneme

\[
\frac{d\vec{\omega}}{dt} = \frac{1}{12} mL^2 \omega^2 (\sin \theta \cos \theta \cos \omega t, -\sin \theta \cos \theta \sin \omega t, 0).
\]

Síly \(T_A \) a \(\vec{N} \), které přispívají do druhé impulsové věty nemocÍmi momenty, mají v soustavě \(S \) složky

\[
T_A = (T_A \sin \omega t, T_A \cos \omega t, 0), \quad \vec{N} = (0, 0, N) = (0, 0, mg).
\]

Jejich výsledný moment vzhledem k bodu O je, samořešitě opět v soustavě \(S \),

\[
\vec{M} = \vec{OP} \times \vec{T}_A + \vec{OP} \times \vec{N}, \quad \vec{OP} = -\frac{L}{2} (\cos \theta \sin \omega t, \cos \theta \cos \omega t, \sin \theta),
\]

\[
\vec{M} = \frac{L}{2} (-mg \cos \theta \cos \omega t + T_A \sin \theta \cos \omega t, mg \cos \theta \sin \omega t - T_A \sin \theta \sin \omega t, 0).
\]
3.2. ROVNOVÁHA A POHYB TUHÝCH TĚLÉS

Povrchově-li složky vektorů \(\vec{v} \) a \(\vec{M} \), v souvislosti s plošnou druhé impulsové věty, dostáváme nakonec
\[
\frac{1}{6} m \omega^2 L \sin \theta \cos \theta = -mg \cos \theta + T_s \sin \theta.
\]
(3.38)

Dosazením za \(T_s \) ze rovnice (3.37) a za \(\omega \) ze vzťahu \(v = \omega \left(R - \frac{L}{2} \cos \theta \right)\) do (3.38) a po úpravě dostaneme
\[
mv^2 \sin \theta \left(1 - \frac{1}{6} \frac{L \cos \theta}{R - \frac{L}{2} \cos \theta} \right) = mg \cos \theta.
\]
(3.39)

Tvoří rovnici je v principu určen úhel naklonění motocyklisty při dané rychlosti \(v \), která je samozřejmě omezena podmínkou
\[T_s \leq N \Rightarrow v^2 \leq g f_s \left(R - \frac{L}{2} \cos \theta \right). \]

Pokud úhel \(\theta \) neznáme, je jistější dodržet pro rychlost podmínku \(v^2 \leq g f_s (R - \frac{L}{2}) \). Vzhledem k tomu, že hodnota \(L \) je v praxi zanedbatelná vzhledem k poloměru zatáčky, dostáváme pro omezení rychlosti v podstatě totéž, jako v nejednodušším případě, kdy jsme motocyklistu na-
hradili hmotným bodem. Řešení „napěknuté“ rovnice (3.39) vzhledem k neznámému úhlu \(\theta \) není rozumně schůdné. Použijeme-li opět aproximaci, která odpovídá praktickým situacím, můžeme hodnotu \(L/2 \) ve jmenovateli zlomků v těto rovnici zase zanedbat, stejně jako můžeme uvnitř závorky zanedbat hodnotu \(\theta \frac{L}{R} (\frac{1}{6} \frac{L \cos \theta}{R - \frac{L}{2} \cos \theta}) \) vzhledem k jednění. Pro úhel \(\theta \) dostáváme v těto aproximaci stejný výsledek jako když jsme použili fakt, že se motocyklistu otáčí i kolem své osy. Zdá se, že jsme za cenu komplikací při „pořádných“ výpočtech nic neziskali. Neni to tak docela pravda — porozuměli jsme lepší impulsovým větám a udělí nás jasně, co je správné a přesné a co je prakticky přijatelná aproximace. V další části úlohy budeme řešit průjezd klopou zatáčkou již přímo v této aproximaci.

Úloha o průjezdu klopanou zatáčkou je jen jednoduchým zobecněním předchozí úlohy s plochou zatáčkou. OBR. 3.21 opět názorně ukazuje situaci. Úhel klopení zatáčky jsme označili \(\alpha \).

OBR. 3.21: PRŮJEZD KLOPENOU ZATÁČKOU

První impulsová věta má tvar
\[
\frac{mv^2}{R} \vec{n} = m \vec{g} + \vec{T_s} + \vec{N},
\]
ve složkách
\[
\frac{mv^2}{R} = T_s \cos \alpha + N \sin \alpha, \quad 0 = -mg + N \cos \alpha - T_s \sin \alpha.
\]

Řešením této soustavy vzhledem k neznámým \(T_s \) a \(N \) dostaneme
\[
T_s = \frac{mv^2}{R} \cos \alpha - mg \sin \alpha, \quad N = \frac{mv^2}{R} \sin \alpha + mg \cos \alpha.
\]
Omezení rychlosti vyplývá opět z podmínky

\[T_s \leq T_{s,\text{max}} = N f_s \quad \Rightarrow \quad \frac{mv^2}{R} \cos \alpha - mg \sin \alpha \leq \left(\frac{mv^2}{R} \sin \alpha + mg \cos \alpha \right) f_s \quad \Rightarrow \]

\[v^2 \leq gR \sin \alpha + f_s \cos \alpha \quad \text{tj.} \quad v \leq \sqrt{gR \sin \alpha + f_s \cos \alpha}, \quad \tan \alpha \leq \frac{1}{f_s}. \]

Na obr. 3.22 je graf závislosti maximální přípustné rychlosti na úhlu klopení zatáčky pro \(g = 9,8 \text{ m} \text{s}^{-2} \), \(R = 40 \text{ m} \) a \(f_s = 0,55 \) (guma na suchém asfaltu).

OBR. 3.22: Průjezd klopenou zatáčkou — maximální rychlost jako funkce úhlu klopení

Pro \(\alpha = 0 \) dostáváme stejný výsledek jako pro plochou zatáčku, což je smysluplné očekávání.

Zbývá určit úhel \(\theta \). Použijeme opět aproximaci, kdy jezdec na motorce nařazuje tyč, jejíž délka je zanedbatelně oproti poloměru zatáčky. V této aproximaci počítáme nulovost výsledného momentu síl \(T_s \) a \(N \) vzhledem ke středu hmotnosti tělesa. Dostaneme, stejně jako u ploché zatáčky, vztah

\[\tan \theta = \frac{N}{T_s} \]

dosadíme však musíme hodnoty \(T_s \) a \(N \) vypočtené pro klopenou zatáčku, tj.

\[\tan \theta = \frac{mv^2 \sin \alpha + mgR \cos \alpha}{mv^2 \cos \alpha - mgR \sin \alpha}. \]

Zatímco u ploché zatáčky nebylo možné, aby se jezdec nenaklonil, tj. nedalo se dokázat hodnoty \(\theta = 90^\circ \), v případě průjezdu klopenou zatáčkou to možné je.

Tato situace nastane pro \(mv^2 \cos \alpha - mgR \sin \alpha \), tj. při rychlosti \(v = \sqrt{gR \tan \alpha} \). Další diskusi výsledků úhly již provede sami.

3.2.4 Rotace tuhého tělesa kolem pevného bodu

V předchozím odstavci jsme se zabývali rotačním pohybem tuhého tělesa v případě, že při něm zůstávala celá přímka (pevná osa) v klidu. V případě rotace *kolem pevného bodu* bude pevný jeden bod, označme jej \(O \). Do něj umístíme počátek vztahových soustav (tj. i soustavy souřadnic). Popis obecného rotačního pohybu tělesa je již poměrně složitý. Rotaci kolem pevné osy jsme možná popsat snadno v inertních vztahových soustavách, neboť neexistuje pevné osy, a tedy pevného svěra. Úhlovy rychlosti tělesa, se způsobí druhé Impulsové věty přenosem způsobem „rozpadu“ na průmět do osy a přemět do rovnici k těto osi kolmé. V případě obecně rotačí je samozřejmě takový rozsah opět možný, pro praktické výpočty však již nějak užitečný, neboť *okamžitá osa rotace* se s časem neustále mění. Můžeme však stále využít skutečnosti, že úhlová rychlost \(\dot{\omega}(t) \) je společná všem částím, resp. hmotným elementům tělesa — to plynou z předpokladu, že je těleso tuhé. Tento předpoklad zajišťuje možnost zvolit vztahovou soustavu takovou pevnou v tělesu, věciž něj budou všechny částice tělesa v klidu (pomocnět
3.2. ROVNOVÁHA A POHYBY TÚHÝCH TĚLES

spojený s touto soustavou neurazmená žídný polohy). Potéže je v tom, že taková soustava bude neinvertibilní, a my máme druhou impulsovou větu k dispozici zatím pouze v soustavě inertiální. Tento nedostatek je třeba napravit. Nejvyhodnější soustavou pevnou v tělesně je soustava, jejíž počátek je, jak již bylo řešeno, v pevném bodě O a souřadnicový osami jsou hlavní osy tenzoru momentu netrvačnosti. Výhoda takového vybavení je dvojí: v soustavě spojené pevně s tůhým tělem má tenzor momentu netrvačnosti časově neproměnné složky, v soustavě souřadnic spojené s jeho hlavními osami má dokonce diagonální tvar — viz odstavec 3.2.2. Oznáme tuto výhodnou soustavu 𝑆′, inertiální soustavu spojenou s pevným bodem označme 𝑆. A buď-li to třeba, zjednodušíme si úkoly ještě tím, že za pevný bod O zvolíme střed hmotnosti tělesa. V soustavě 𝑆 má moment hmotnosti tělesa složky 𝜔 = (𝜓1, 𝜓2, 𝜓3), v soustavě 𝑆′ složky 𝜔′ = (𝜓′1, 𝜓′2, 𝜓′3). Úhlová rychlost 𝜔(t), kterou těleso rovuje vzhledem k soustavě 𝑆 je v soustavě 𝑆′ vyjádřena složkami 𝜔 = (ω′1, ω′2, ω′3). Pro derivaci momentu hmotnosti podle času v soustavě 𝑆 a 𝑆′ platí vztah typu (1.60), tj.

\[
\frac{d\mathbf{J}}{dt}_S = \omega \times \mathbf{J}_S \quad \text{a} \quad \frac{d\mathbf{J}}{dt}_{S'} = \omega \times \mathbf{J}_{S'}.
\]

(3.40)

Formulace druhé impulsové věty máme k dispozici pouze pro inertiální vatazné soustavy, popřípadě pro speciální neinvertibilní soustavy — takové, které jsou spojeny se středem hmotnosti tělesa a jejich osy vzhledem k inertiálnímu soustavám neronou. Potřebujeme však „polibcovou rovnici“ pro moment hmotnosti tělesa vatazný k inertiální soustavě 𝑆, ale ve složkách zapsaný v soustavě 𝑆′. Abychom ji získali, musíme do druhé impulsové věty dosadit pravou stranu transformačního vzorce (3.40), tj.

\[
\frac{d\mathbf{J}}{dt}_{S'} = \omega \times \mathbf{J}_{S'} = M_{\text{ext}}'.
\]

(3.41)

Zápisem \(M_{\text{ext}}'\) se rozumí, že výsledný moment vnějších skutečných síl rozepsanému do složek v soustavě 𝑆′. Ve složkách pak dostaneme trv. EulEROvy rovnice

\[
\begin{align*}
\omega_1' + \omega_2' \omega_3' - \omega_3' \omega_2' &= (M_{\text{ext}}')_1' \\
\omega_2' + \omega_3' \omega_1' - \omega_1' \omega_3' &= (M_{\text{ext}}')_2' \\
\omega_3' + \omega_1' \omega_2' - \omega_2' \omega_1' &= (M_{\text{ext}}')_3'
\end{align*}
\]

(3.42)

(3.43)

Pro složky momentu hmotnosti platí

\[
\begin{align*}
\omega_1' &= J_1 \omega_1, \quad \omega_2' = J_2 \omega_2, \quad \omega_3' = J_3 \omega_3.
\end{align*}
\]

(3.44)

(Hned je vždy výhodnější konstruovat spojené s hlavními osami tenzor momentu netrvačnosti tělesa.) Dostaneme do rovnice (3.42) dostaneme soustavu diferenciálních rovnic pro složky úhlové rychlosti

\[
\begin{align*}
J_1 \dot{\omega}_1 + (J_3 - J_2) \omega_2 \omega_3' &= (M_{\text{ext}}')_1' \\
J_2 \dot{\omega}_2 + (J_1 - J_3) \omega_1 \omega_3' &= (M_{\text{ext}}')_2' \\
J_3 \dot{\omega}_3 + (J_2 - J_1) \omega_1 \omega_2' &= (M_{\text{ext}}')_3'.
\end{align*}
\]

(3.44)

V dalším rozboru využijeme možné symetrie rozeřízení hmotnosti tělesa. Ta je dana diagonálním tvarem tenzoru momentu netrvačnosti. Možnosti jsou tedy:

- **Kulový soutračník** — hmotnost tělesa je rozložena tak, že \(J_\infty = J_\xi = J_\beta = J\). Typickým příkladem kulového soutračníku je skutečná homogenej konše s pevným bodem \(O\) v hmotném středu. Symetrie rozložení její hmotnosti je způsobena ne symetrie geometrické. Všechny přímky vycházející z bodu \(O\) jsou rovnoběžné a možnou složit jako hlavní osy tenzoru momentu netrvačnosti.
• Symetrický setračník — hmotnost tělesa je rozložena tak, že $J_{xx} = J_{yy} = J_{zz}$. Typickým příkladem symetrického setračníku je jakékoli homogenní rotační těleso (válec, kužel, osoblový skoup, ...) opět s pevným bodem O v hmotném středu. Symetrie rozložení hmotnosti zase sběrnu se symetrie geometrickou. Jednou z hlavních os tenzoru momentu setračnosti tělesového tělesa je osa jeho geometrické symetrie, všechny přímky vycházející z bodu O a ležící v rovině kolmé ke geometrické ose jsou rovnocenné a mohou sloužit jako další hlavní ose tenzoru momentu setračnosti.

• Asymetrický setračník — hmotnost tělesa je rozložena obecně, hodnoty J_1, J_2 a J_3 jsou navzájem různé.

V dalším budeme nadále předpokládat, že pevným bodem tělesa je jeho střed hmotnosti. Předpokládám impulsivno větu tato situace nastane právě tehdy, je-li výsledné vzniklých sil působících na těleso nulová. V případě, že je jakékoliv moment vzniklých sil působících na těleso nulový, můžeme o volném setračníku, nepříliš vhodné též názváním setračníkem bezobývajícím. Ukážeme si příklady pohybu volných setračníků.

Příklad 3.15. Volný kulový setračník

Eulerovy rovnice pro kulový setračník jsou tak triviální, že jsou v podstate neznámé. To platí zejména pro volný setračník. Z rovnice (3.44) dostaneme

$$\vec{\omega} = \vec{0} \Rightarrow \vec{\omega}(t) = \text{konst}.$$

Příklad 3.16. Volný symetrický setračník

Eulerovy rovnice pro volný symetrický setračník jsou jíž známé, neznámé. Rovnice (3.44) pro ně mají tvar

$$J_1\omega_1' + (J_3 - J_1)\omega_2\omega_3' = 0,$$

$$J_1\omega_2' + (J_1 - J_3)\omega_3\omega_1' = 0,$$

$$J_3\omega_3' = 0.$$

Z těch rovnic je hned vidět, že třetí složka úhlové rychlosti je konstantní, oznáme ji $\omega_3 = \dot{\omega}_3$. Zbylé dvě rovnice

$$J_1\omega_1' + (J_3 - J_1)\omega_2\omega_3 = 0,$$

$$J_1\omega_2' + (J_1 - J_3)\omega_3\omega_1 = 0$$

už snadno vyřešíme. Upravíme-li je na tvar

$$\omega_1' + \left(\frac{J_3 - J_1}{J_1}\right)\omega_2' = 0,$$

$$\omega_2' - \left(\frac{J_1 - J_3}{J_1}\right)\omega_1' = 0,$$

výdaje, že jsem už něco podobného řešil v kapitole 2. Řešení má tvar

$$\omega_1(t) = A \cos \Omega t + B \sin \Omega t,$$

$$\omega_2(t) = -B \cos \Omega t + A \sin \Omega t,$$

$$\Omega = \frac{J_3 - J_1}{J_1} \omega_0.$$

A a B jsou integrační konstanty, které je třeba určit z počátečních podmínek. Pro velikost úhlové rychlosti platí

$$\omega = \sqrt{A^2 + B^2 + \omega_0^2} = \text{konst}, \quad (\omega_1')^2 + (\omega_2')^2 = A^2 + B^2 = \text{konst}.$$
Vektor $\vec{a}(t)$ tedy vzhledem k pozorovateli v soustavě S' opisuje rotační kuželovou plochu K' s osou z' a úhlem θ mezi libovolnou povrchovou přímkou a osou, přičemž
\[\tan \frac{\tau}{\omega_0} = \sqrt{\frac{A^2 + B^2}{\omega_0^2}}. \]

Pro momenty hybnosti setrvačníku pak dostáváme
\[\ell_1' = J_3 (A \cos \Omega t + B \sin \Omega t), \]
\[\ell_2' = J_3 (-B \cos \Omega t + A \sin \Omega t), \]
\[\ell_3' = J_3 \omega_0, \]
\[\ell = \sqrt{\ell_1'^2 (A^2 + B^2) + J_3^2 \omega_0^2}. \]

Vektor momentu hybnosti také vzhledem k pozorovateli v S opisuje rotační kuželovou plochu K'' s osou z', pro vřeholový úhel θ platí
\[\tan \frac{\tau}{\omega_0} = \frac{J_3 \sqrt{A^2 + B^2}}{J_3 \omega_0} = \frac{J_3}{J_3} \tan \frac{\tau}{\omega_0}. \]

Vypočteme již úhel ϕ mezi vektory \vec{a} a \vec{e}. Platí
\[\cos \phi = \frac{\vec{a} \cdot \vec{e}}{\omega} = \frac{J_3 (A^2 + B^2) + J_3^2 \omega_0^2}{\omega \ell} = \text{konšt.} \]

Vzhledem k tomu, že setrvačník je volný, tj. $M_{ext} = 0$, je moment hybnosti ℓ konstantní vzhledem k nereálním soustavám, tj. také vzhledem k soustavě S. V této soustavě je to tedy pevné daný vektor, který lze chápat jako vázaný vektor umístěný ve středu hmotnosti tělesa O (pevný bod) a leží v přímce p, která je v soustavě S v klidu. Před chvíli jsme však zjistili, že úhel ϕ mezi vektory \vec{a} a \vec{e} je konstantní. Vektor \vec{a} tedy opisuje vzhledem k pozorovateli v nereálné vrstvě soustavě S rotační kuželovou plochu K, jejíž osou je přímka p a vřeholovým úhlem je úhel ϕ. Situaci znázorňuje Obr. 3.23.

Obr. 3.23: Volně symetrický setrvačník — k problému regulárního precizního

Kuželová plocha K' se však po kuželové ploše K. Osa z', která je pevná v tělesu a představuje tedy pevný směr pro pozorovatele v soustavě S', při tomto valení rotuje vzhledem k soustavě S tak, že svěři stálý úhel $\theta = \phi$ s pevným směrem p. Přímkou, ve které leží vektor \vec{a} je společnou povrchovou přímkou kuželových ploch K' a K. Kružnice k' a k vyznámené v Obr. 3.23 mají společnou tečnu, ose z', p a středná povrchová přímka kuželových ploch K' a K leží v každém okamžiku v jedné rovině. Osa z' „obíhá“ kořem pevné přímky p stejnou úhlovou rychlostí (označme ji Ω_p), jako vektor \vec{a}. Vykreslej takovou regulární precizní. Vzhledem k odvádění kuželových ploch K' a K jsou věčně v Ω a Ω_p vázány vrstvě patrným z Obr. 3.23.

\[\omega \sin \theta = \Omega_p \sin \theta \implies \Omega_p = \frac{\omega_0 J_3}{J_3} 1 + \frac{J_3^2 (A^2 + B^2)}{J_3 \omega_0^2}. \]

Za předpokladu takové velké počátečních podmínek, která vede k malým hodnotám A a B v porovnání s ω_0 lze sčítací tvaru zlomku pododmocnínou zasobit oproti jedněčce. Pak
\[\Omega_p = \omega \frac{J_3}{J_3} = \Omega \frac{J_3}{|J_3 - J_1|}. \]

Regulární precizní můžeme experimentálně užívat například na setrvačníku nestrojeném z bicyklového kola rotujícího v ložisku kožem pevné tyče, která je podepřena na stojanu tak,
aby kolo bylo vyváženo. V této podobě jde o typickou rotaci tělesa kolem pevné osy. Po krátkou dobu Δt zapišeme na tyč [například úderem zhora] dodatečnou sílu s nemožným momentem. Moment hybnosti soustavy se tím oproti původní hodnotě $\ell(0)$ nesie změni o jisté $\Delta \ell$, avšak poté, co dodatečná síla přestane působit, ne bude moment hybnosti soustavy opět zachovávat, a to na hodnotě $\ell = \ell(0) + \Delta \ell$. Soustava bude vykonávat procesní pohyb — uvidíme, jak tyč opisuje kuželovou plochu, jejíž osou bude jistá pevná přímka p. ♠
Kapitola 4

Mechanika tekutin

4.1 Statická rovnováha tekutin

4.1.1 Podmínky rovnováhy

4.1.2 Tlak a jeho rozložení v tekutině

4.2 Pohyb tekutin

4.2.1 Popis pohybu kontinua

Jednouchází počet popisu pohybu tělesa s diskrétním rozložením hmotnosti (součástky částic) spočívá v možnosti opatřit každou částicí tělesa jejím identifikačním znakem — celekem, hodnotou indexové proměnné Ĳ. Všechny veličiny související s Ĳ-tou částicí byly příslušným indexem rovněž označeny: \(m_i, \mathbf{r}_i(t), \mathbf{v}_i(t), \ldots \). V případě kontinua, tělesa se spojitém rozložením hmotnosti, kdy neuvádíme o hmotných bodech, ale „spojité navazujících“ hmotných elementech, nelze diskrétního indexového značení použít. Vzniklý problém volby „identifikačního znaku“ hmotného elementu. Tato volba souvisí se dvěma základními metodami popisu pohybu kontinua.

První z nich, v praktických případech méně využívaná, je metoda popisu pomocí trajektorii-Lagrangeova. Identifikačním znakem konkrétního elementu, pohybujícího se po určité trajektorii \(C_\xi \), je jeho polohový vektor \(\xi = (\xi_1, \xi_2, \xi_3) \) v okamžiku \(t = 0 \). Parametrické vyjádření trajektorie \(C_\xi \) pak představuje vektorová funkce čtyř proměnných

\[
C_\xi: \mathbf{r}_\xi = \mathbf{r}(\xi, t) = (x_1(\xi_1, \xi_2, \xi_3, t), x_2(\xi_1, \xi_2, \xi_3, t), x_3(\xi_1, \xi_2, \xi_3, t)), \quad (4.1)
\]

kde \(\mathbf{r}(\xi, 0) = \xi \). Rychlost hmotného elementu je dána vztahem

\[
\mathbf{v}_\xi = \mathbf{v}(\xi, t) = \frac{\partial \mathbf{r}(\xi, t)}{\partial t} =
\]

\[
= \left(\frac{\partial x_1(\xi_1, \xi_2, \xi_3, t)}{\partial t}, \frac{\partial x_2(\xi_1, \xi_2, \xi_3, t)}{\partial t}, \frac{\partial x_3(\xi_1, \xi_2, \xi_3, t)}{\partial t} \right). \quad (4.2)
\]

201
Obrázek 4.2-1: Popis pohybu kontinua—LaGrangeova metoda

Druhá z metod, Eulera, je při řešení problémů mechaniky kontinua běžnější. Využívá popis pohybu hmotných elementů pomocí proudnic. Identifikačním znakem hmotného elementu je polehový vektor \(\vec{r} \) místa v prostoru, v němž se hmotný element nachází právě v okamžiku \(t \), pohybový stav elementu je zadaný jeho rychlostí jako vektorovou funkci čtyř proměnných

\[
\vec{v} = \vec{v}(\vec{r}, t) = (v_1(x_1, x_2, x_3, t), v_2(x_1, x_2, x_3, t), v_3(x_1, x_2, x_3, t)).
\]

Funkce (4.3) představuje z matematického hlediska časově proměnné vektorové pole v \(\mathbb{R}^3 \). (Pro pevně zvolený okamžik \(t_0 \) odpovídá každému bodu \(\vec{r} \) v prostoru právě jeden vázaný vektor \(\vec{v}(\vec{r}, t_0) \).) Integrální křivky tohoto vektorového pole, jejichž parametrické vyjádření \(\vec{r} = \vec{r}(s, t_0) \) vyhovuje rovnici

\[
\frac{d\vec{r}(s, t_0)}{ds} = \vec{v}[\vec{r}(s), t_0],
\]

vytvářejí obraz proudnic rychlostního pole \(\vec{v}(\vec{r}, t_0) \) v pevně zvoleném okamžiku \(t_0 \). (Parametr \(s \) zde nemá význam času.) Každým bodem prostoru prochází v okamžiku \(t_0 \) právě jedna proudnice. Jednotlivé proudnice jsou odlišeny svými počátečními body, odpovídajícími hodnotě \(s = 0 \), tj. \(\vec{r}(0, t_0) = \zeta \). Konečné body vektorů \(\zeta \) vytvářejí plochu \(S \). Tuto lze, jakoli dvojrozměrný útvar, popsat dvěma proměnnými. Proto hovoříme o obrazu proudnic v prostoru jako o dvoji-parametrické soustavě křivek. Vektor \(\vec{v}(\vec{r}, t_0) \) je tečním vektorem k proudnicí procházející bodem \(\vec{r} \).

Obrázek 4.2-2: Popis pohybu kontinua—Eulerova metoda

Obecně je obraz proudnic v každém okamžiku jiný. Pro každý okamžik \(t \) jsou proudnice řešením rovnice (4.3), v níž zaměníme \(t_0 \) za \(t \).

Příklad 4.2-1. V pevně zvoleném okamžiku \(t \) je vektorové pole rychlostí v rovině \(\mathbb{R}^2 \) zadána vztahem \(\vec{v}(\vec{r}) = (v_1(x_1, x_2), v_2(x_1, x_2)) = (2, 3x_1) \). Najdeme obraz proudnic v tomto okamžiku:

\[
\frac{d\vec{r}(s)}{ds} = \vec{v}(\vec{r}) \implies \frac{dx_1(s)}{ds} = 2, \quad \frac{dx_2(s)}{ds} = 3x_1.
\]

Řešením předchozí soustavy rovnic dostáváme parametrické vyjádření proudnic v okamžiku \(t \):

\[
x_1(s) = 2s + A, \quad x_2(s) = 3s^2 + 3As + B,
\]
kde A, B jsou libovolné konstanty. Využíváním parametru s obdržíme kartézské rovnice všech proudnic:

$$x_2 = \frac{3}{4}x_1^2 + Q,$$

kde $Q = B - \frac{3}{4}A^2$ je libovolná konstanta. Přídušnice v rovině tedy vytvářejí jednoparametrickou soustavu křivek, v následním případě parabola. Parametrem křivek je veličina Q.

Obrázek 4.2-3: Jednoparametrická soustava proudnic v rovině

Popis pohybu kontinua v okolí daného bodu prostoru lze vždy rozložit na tři nezávislé příspěvky: pohyby translační, rotační a deformací.

Jednoduché případy nyní popíšeme odděleně.

Při části translačním pohybu je $\vec{r} = \vec{r}(\xi, t) = \vec{r} + \vec{u}(t)$, kde vektor posunutí $\vec{u}(t)$ je nezávislý na původní poloze hmotného elementu. Pak

$$\vec{v}(\vec{r}, t) = \frac{\partial \vec{r}(\xi, t)}{\partial t} = \frac{d\vec{u}(t)}{dt},$$

nezávisle na \vec{r}. Obrazem proudu v daném okamžiku t je soustava rovnoběžných čar, jejichž hustota (počet čar protínajících jednotkovou plochu na několik) je úměrná velikosti vektoru \vec{v}. Platí

$$\vec{v}(x_1 + dx_1, x_2 + dx_2, x_3 + dx_3) - \vec{v}(x_1, x_2, x_3) = \vec{0} \implies \frac{\partial v_j}{\partial x_k} = 0, \; j, k \in \{1, 2, 3\}. \quad (4.5)$$

Obrázek 4.2-4: Soustava proudu v okamžiku t při translačním a rotačním pohybu kontinua

Představme si nyní kontinuum jako těleso vytvárající část rotační pohyb úhlovou rychlostí $\vec{\omega}(t)$. Pak

$$\vec{v}(\vec{r}, t) = \vec{\omega}(t) \times \vec{r} = (\omega_2(t)x_3 - \omega_3(t)x_2, \omega_3(t)x_1 - \omega_1(t)x_3, \omega_1(t)x_2 - \omega_2(t)x_1).$$

Obecně platí

$$v_j(x_1 + dx_1, x_2 + dx_2, x_3 + dx_3, t) - v_j(x_1, x_2, x_3, t) = \frac{3}{k=1} \frac{\partial v_j}{\partial x_k} \cdot dx_k, \; j, k \in \{1, 2, 3\}.$$

Vzhledem ke konkrétnímu tvaru vektorové funkce $\vec{v}(\vec{r}, t)$ v případě rotačního pohybu je

$$v_1(x_1 + dx_1, x_2 + dx_2, x_3 + dx_3, t) - v_1(x_1, x_2, x_3, t) = -\omega_3(t)dx_2 + \omega_2(t)dx_1,$$

$$v_2(x_1 + dx_1, x_2 + dx_2, x_3 + dx_3, t) - v_2(x_1, x_2, x_3, t) = -\omega_1(t)dx_3 + \omega_3(t)dx_1,$$

$$v_3(x_1 + dx_1, x_2 + dx_2, x_3 + dx_3, t) - v_3(x_1, x_2, x_3, t) = -\omega_2(t)dx_1 + \omega_1(t)dx_2.$$

Z předchozích vztahů je vidět, že pro část rotační pohyb kontinua platí

$$\frac{\partial v_j}{\partial x_k} + \frac{\partial v_j}{\partial x_k} = 0, \; j, k \in \{1, 2, 3\}. \quad (4.6)$$
Výjádříme nyní roadil \(\vec{v}(\vec{r} + d\vec{r}, t) - \vec{v}(\vec{r}, t) \) obecně:

\[
v_j(\vec{r} + d\vec{r}, t) = v_j(\vec{r}, t) + \sum_{k=1}^{3} \frac{\partial v_j(\vec{r}, t)}{\partial x_k} dx_k = \]

\[
v_j(\vec{r}, t) + \sum_{k=1}^{3} \frac{1}{2} \left(\frac{\partial v_j(\vec{r}, t)}{\partial x_k} - \frac{\partial v_k(\vec{r}, t)}{\partial x_j} \right) dx_k + \frac{3}{2} \sum_{k=1}^{3} \left(\frac{\partial v_k(\vec{r}, t)}{\partial x_k} + \frac{\partial v_k(\vec{r}, t)}{\partial x_j} \right) dx_k , j \in \{1, 2, 3\} . \quad (4.7)
\]

(Při úpravě výrazu \(\sum_{k=1}^{3} \frac{\partial v_j}{\partial x_k} dx_k \) jsem využil formálního zápisu večíčny \(C_{jk} = \frac{\partial v_j}{\partial x_k} \) ve tvaru \(C_{jk} = \frac{1}{2}(C_{jk} + C_{kj}) + \frac{1}{2}(C_{jk} - C_{kj}) \). Interpretační význam na pravé straně přechod řešení je následující (viz vzorce (4.5) a (4.6)). Člen \(v_j(\vec{r}, t) \) odpovídá translaci pohybu, člen \(\sum_{k=1}^{3} \frac{1}{2} \left(\frac{\partial v_j(\vec{r}, t)}{\partial x_k} - \frac{\partial v_k(\vec{r}, t)}{\partial x_j} \right) dx_k \) rotaci pohybu a člen \(\sum_{k=1}^{3} \frac{1}{2} \left(\frac{\partial v_k(\vec{r}, t)}{\partial x_k} + \frac{\partial v_k(\vec{r}, t)}{\partial x_j} \right) dx_k \) zbývá na pohybu deformace. Soubory večíč

\[
A_{jk}(\vec{r}, t) = \frac{1}{2} \left(\frac{\partial v_j(\vec{r}, t)}{\partial x_k} - \frac{\partial v_k(\vec{r}, t)}{\partial x_j} \right) , \ B_{jk}(\vec{r}, t) = \frac{1}{2} \left(\frac{\partial v_j(\vec{r}, t)}{\partial x_k} + \frac{\partial v_k(\vec{r}, t)}{\partial x_j} \right) \]

jou složená kartézských tensorů druhého řádu. Tensor \(A \) je antisymetrický, neboť \(A_{jk} = -A_{kj} \), tenor \(B \) je symetrický, protože \(B_{jk} = B_{kj} \). \(B \) se nazývá tenor rychlosti deformace.

\[
v_j(\vec{r} + d\vec{r}, t) = v_j(\vec{r}, t) + \sum_{k=1}^{3} A_{jk} dx_k + \sum_{k=1}^{3} B_{jk} dx_k .
\]

Polyb kontinua se nazývá ustáleným (stacionárním) prouděním, jestliže je vektorové pole \(\vec{v} \) časově neproměnné, tj. \(\vec{v} = \vec{v}(\vec{r}) \). V takovém případě je obraz proudící v každém okamžiku stejné. Znamená to, že každý element kontinua, který se ocne v místě o pohybovém vektoru \(\vec{r} \), musí nabýt rychlosti \(\vec{v} \), která je tomuto místu přiřazena vektorovou funkci \(\vec{v} = \vec{v}(\vec{r}) \), a to bez ohledu na okamžik, v němž se element v uvažovaném místě nachází. Je skutečností, že vektor rychlosti elementu je v každém okamžiku tečný k jeho trajektorii a současně k proudnic, která v daném okamžiku prochází bodem trajektorie, v němž element právě je, vyplývá, že ve stacionárním případě splývají trajektorie s proudnicemi. Je-jich parametrické vyjádření je řešením vektorové rovnice (4.4), v něž parametr s získává význam času, tj. \(s = t \), a závislost na \(t_0 \) mízí. Vektorové počáteční podmínky mají tvar \(\vec{r}_0(0) = \vec{\xi} \) a partikulární řešení rovnice (4.4), tj. jednotlivé trajektorie, lze zapsat jako vektorové funkce čtyř proměnných: \(\vec{r}_0(t) = \vec{r}(\vec{\xi}, t) \).

4.2.2 Polyb ideálních tekutin

4.2.3 Polyb reálných tekutin
Kapitola 5

Soustavy mnoha částic a zákonitosti jejich chování

5.1 Zákony termodynamiky
5.2 Makroskopické veličiny a střední hodnoty
5.3 xxxxx